Synthesis 2021; 53(04): 723-730
DOI: 10.1055/s-0040-1705957
paper

Synthesis of Azocane- and Oxocane-Annulated Furans by a [2+2] Photocycloaddition–Ring-Opening Cascade

Xinyao Li
,
Christian Jandl
,
Thorsten Bach
Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany   Email: thorsten.bach@ch.tum.de
› Author Affiliations
Financial support by the Deutsche Forschungsgemeinschaft (GRK 1626) is gratefully acknowledged. X.L. thanks the Alexander von Humboldt Foundation for a research fellowship.


Dedicated to Professor Paul Knochel on the occasion of his 65th birthday

Abstract

The title compounds were synthesized from readily available quinolone and coumarin derivatives by a cascade reaction (12 examples, 90–98% yield). The cascade comprised a [2+2] photocycloaddition which occurred upon sensitized irradiation at λ = 420 nm (or direct UV irradiation at λ = 366 nm) and a subsequent acid-catalyzed ring-opening reaction. A variety of substituents are compatible with the conditions and a 3-alkyl group in the coumarin (or quinolone) is crucial to achieve a high chemoselectivity. Key to the success of the ring opening is the formation of a 4,5,5a-trihydrocyclobuta-2H-furan containing a strained bridgehead double bond which stems from the allenyl group tethered to the 4-position of the starting materials.

Supporting Information



Publication History

Received: 18 September 2020

Accepted: 29 September 2020

Article published online:
05 November 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • Reviews:
    • 1a Crimmins MT. Chem. Rev. 1988; 88: 1453
    • 1b Demuth M, Mikhail G. Synthesis 1989; 145
    • 1c Crimmins MT, Reinhold TL. Org. React. 1993; 44: 297
    • 1d Margaretha P. Photocycloaddition of Cycloalk-2-enones to Alkenes. In Synthetic Organic Photochemistry, Molecular and Supramolecular Photochemistry, Vol. 12. Griesbeck AG, Mattay J. Dekker; New York: 2005: 211
    • 1e Iriondo-Alberdi J, Greaney MF. Eur. J. Org. Chem. 2007; 4801
    • 1f Hoffmann N. Chem. Rev. 2008; 108: 1052
    • 1g Poplata S, Tröster A, Zou Y.-Q, Bach T. Chem. Rev. 2016; 116: 9748

      For reviews on cyclobutane-containing natural products, see:
    • 2a Hansen TV, Stenstrom Y. In Organic Synthesis: Theory and Applications, Vol. 5. Hudlicky T. Elsevier; Oxford: 2001: 1
    • 2b Dembitsky VM. J. Nat. Med. 2008; 62: 1

      For reviews on the use of cyclobutane intermediates in synthesis, see:
    • 3a Namyslo JC, Kaufmann DE. Chem. Rev. 2003; 103: 1485
    • 3b Seiser T, Saget T, Tran DN, Cramer N. Angew. Chem. Int. Ed. 2011; 50: 7740

      Recent reviews:
    • 4a Brenninger C, Jolliffe JD, Bach T. Angew. Chem. Int. Ed. 2018; 57: 14338
    • 4b Burg F, Bach T. J. Org. Chem. 2019; 84: 8815
    • 4c Schwinger DP, Bach T. Acc. Chem. Res. 2020; 53: 1933
  • 5 Alonso R, Bach T. Angew. Chem. Int. Ed. 2014; 53: 4368

    • For recent work, see:
    • 6a Tröster A, Alonso R, Bauer A, Bach T. J. Am. Chem. Soc. 2016; 138: 7808
    • 6b Hölzl-Hobmeier A, Bauer A, Silva AV, Huber SM, Bannwarth C, Bach T. Nature 2018; 564: 240
    • 6c Wimberger L, Kratz T, Bach T. Synthesis 2019; 51: 4417
    • 6d Plaza M, Jandl C, Bach T. Angew. Chem. Int. Ed. 2020; 59: 12785
    • 6e Li X, Kutta RJ, Jandl C, Bauer A, Nuernberger P, Bach T. Angew. Chem. Int. Ed. 2020; in press; DOI: 10.1002/anie.202008384
  • 7 Li X, Jandl C, Bach T. Org. Lett. 2020; 22: 3618

    • For previous work on the [2+2] photocycloaddition of quinolones and allenes, see:
    • 8a Chiba T, Okada M, Kato T. J. Heterocycl. Chem. 1982; 19: 1521
    • 8b Kaneko C, Naito T, Momose Y, Shimomura N, Ohashi T, Somei M. Chem. Pharm. Bull. 1983; 31: 2168
    • 8c Chiba T, Kato T, Yoshida A, Moroi R, Shimomura N, Momose YU, Naito T, Kaneko C. Chem. Pharm. Bull. 1984; 32: 4707

      Reviews:
    • 9a Alcaide B, Almendros P, Aragoncillo C. Chem. Soc. Rev. 2010; 39: 783
    • 9b Winkler JD, Bowen CM, Liotta F. Chem. Rev. 1995; 95: 2003

      For selected examples, see:
    • 10a Pirrung MC, Thomson SA. J. Org. Chem. 1988; 53: 227
    • 10b Becker D, Nagler M, Sahali Y, Haddad N. J. Org. Chem. 1991; 56: 4537
    • 10c Maradyn DJ, Sydnes LK, Weedon AC. Tetrahedron Lett. 1993; 34: 2413
    • 10d Tsuno T, Hoshino H, Okuda R, Sugiyama K. Tetrahedron 2001; 57: 4831
    • 10e Shimada Y, Nakamura M, Suzuka T, Matsui J, Tatsumi R, Tsutsumi K, Morimoto T, Kurosawa H, Kakiuchi K. Tetrahedron Lett. 2003; 44: 1401
    • 10f Mittendorf J, Kunisch F, Matzke M, Militzer H.-C, Schmidt A, Schönfeld W. Bioorg. Med. Chem. Lett. 2003; 13: 433
    • 10g Morimoto T, Horiguchi T, Yamada K, Tsutsumi K, Kurosawa H, Kakiuchi K. Synthesis 2004; 753
    • 10h Hue BT. B, Dijkink J, Kuiper S, van Schaik S, van Maarseveen JH, Hiemstra H. Eur. J. Org. Chem. 2006; 127
    • 10i Ward DE, Shen J. Org. Lett. 2007; 9: 2843
    • 10j Leonelli F, Blesi F, Dirito P, Trombetta A, Ceccacci F, La Bella A, Migneco LM, Bettolo RM. J. Org. Chem. 2011; 76: 6871
    • 10k Yang Y, Fu X, Chen J, Zhai H. Angew. Chem. Int. Ed. 2012; 51: 9825
    • 10l Serafino A, Balestri D, Marchio L, Malacria M, Derat E, Maestri G. Org. Lett. 2020; 22: 6354
    • 11a Wiesner K, Musil V, Wiesner KJ. Tetrahedron Lett. 1968; 9: 5643
    • 11b Morimoto T, Horiguchi T, Yamada K, Tsutsumi K, Kurosawa H, Kakiuchi K. Synthesis 2004; 753
    • 11c Winkler JD, Ragains JR. Org. Lett. 2006; 8: 4031
    • 11d Lutteke G, Al Hussainy R, Wrigstedt PJ, Hue BT. B, de Gelder R, van Maarseveen JH, Hiemstra H. Eur. J. Org. Chem. 2008; 925
    • 12a Mancini I, Cavazza M, Guella G, Pietra F. J. Chem. Soc., Perkin Trans. 1 1994; 2181
    • 12b Ralph MJ, Harrowven DC, Gaulier S, Ng S, Booker-Milburn KI. Angew. Chem. Int. Ed. 2015; 54: 1527
    • 12c Day JJ, McFadden RM, Virgil SC, Kolding H, Alleva JL, Stoltz BM. Angew. Chem. Int. Ed. 2011; 50: 6814
    • 12d Tymann D, Tymann DC, Bednarzick U, Iovkova-Berends L, Rehbein J, Hiersemann M. Angew. Chem. Int. Ed. 2018; 57: 15553
    • 12e Ha S, Lee Y, Kwak Y, Mishra A, Yu E, Ryou B, Park C.-M, Ryou B, Park C.-M. Nat. Commun. 2020; 11: 2509
  • 13 For a recent report on a reaction cascade of quinolones involving [2+2] photocycloaddition, elimination, and fragmentation, see: Xu D, Li H, Pan G, Huang P, Oberkofler J, Reich RM, Kühn FE, Guo H. Org. Lett. 2020; 22: 4372
  • 14 For a comprehensive study on a series of thioxanthone sensitizers, see: Elliott LD, Kayal S, George MW, Booker-Milburn K. J. Am. Chem. Soc. 2020; 142: 14947
  • 15 CCDC 2032099 (rac-4b) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 16 Henkel M, Bach T. Synthesis 2020; 52: 1231 ; and references cited therein

    • For previous work on the [2+2] photocycloaddition of coumarins and allenes, see:
    • 17a Carreira EM, Hastings CA, Shepard MS, Yerkey LA, Millward DB. J. Am. Chem. Soc. 1994; 116: 6622
    • 17b Shepard MS, Carreira EM. Tetrahedron 1997; 53: 16253

      Reviews:
    • 18a Kraus GA, Hon YS, Thomas PJ, Laramay S, Liras S, Hanson J. Chem. Rev. 1989; 89: 1591
    • 18b Warner PM. Chem. Rev. 1989; 89: 1067