Synthesis 2021; 53(08): 1489-1494
DOI: 10.1055/s-0040-1705961
paper

Nickel-Catalyzed Reductive Allylation of Aldehydes with Allyl Acetates

Hiroyuki Suzuki
,
Eiji Yamaguchi
,
Akichika Itoh
The work was financially supported by the OGAWA Science and Technology Foundation (EY) and a Ministry of Education, Culture, Sports, Science, and Technology (MEXT) Grant-in-Aid for Young Scientists (Grant Number 18K14871) (to E.Y.).


Abstract

Carbonyl allylation reactions constitute an important step in the formation of carbon–carbon reactions, and involve various related reactions that chiefly use allylmetal reagents. This report presents a nickel-catalyzed carbonyl allylation reaction using allyl acetate, which produces homoallyl alcohols in moderate to good yields, as an efficient methodology under reductive coupling conditions.

Supporting Information



Publication History

Received: 01 September 2020

Accepted after revision: 01 October 2020

Article published online:
02 December 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Comprehensive Organic Synthesis, 2nd ed., Vol. 1 and 2. Knochel P, Molander GA. Elsevier; Oxford: 2014

    • For reviews on the Grignard reaction, see:
    • 2a Zhu M, Liu L, Yu H.-T, Zhang W.-X, Xi Z. Chem. Eur. J. 2018; 24: 19122
    • 2b Ziegler DS, Wei B, Knochel P. Chem. Eur. J. 2018; 25: 2695
    • 2c Douchez A, Geranurimi A, Lubell WD. Acc. Chem. Res. 2018; 51: 2574
    • 2d Westerhausen M, Koch A, Gçrls H, Krieck S. Chem. Eur. J. 2016; 23: 1456
    • 2e Bao RL.-Y, Zhao R, Shi L. Chem. Commun. 2015; 51: 6884
    • 2f Klatt T, Markiewics JT, Sämann C, Knochel P. J. Org. Chem. 2014; 79: 4253
    • 2g Mongin F, Harrison-Marchand A. Chem. Rev. 2013; 113: 7563
    • 2h Seyferth D. Organometallics 2009; 28: 1598
    • 2i Ila H, Baron O, Wagner AJ, Knochel P. Chem. Lett. 2006; 35: 2
    • 2j Ila H, Baron O, Wagner AJ, Knochel P. Chem. Commun. 2006; 583

      For reviews on allyl Grignard reagents, see:
    • 3a Yamamoto Y, Asao N. Chem. Rev. 1993; 93: 2207
    • 3b Li C.-J. Chem. Rev. 1993; 93: 2023
    • 3c Li C.-J. Tetrahedron Lett. 1996; 52: 5643
    • 3d Kennedy JW. J, Hall DG. Angew. Chem. Int. Ed. 2003; 42: 4732
  • 4 Huo H.-X, Duvall JR, Huanga M.-Y, Hong R. Org. Chem. Front. 2014; 1: 303
  • 5 Yus M, Gonzalez-Gómez JC, Foubelo F. Chem. Rev. 2013; 113: 5595
  • 6 Elford TG, Hall DG. Synthesis 2010; 893
    • 7a Chen W, Yang Q, Zhou T, Tian Q, Zhang G. Org. Lett. 2015; 17: 5236
    • 7b Kang JY, Connell BT. J. Am. Chem. Soc. 2010; 132: 7826
    • 7c Miller JJ, Sigman MS. J. Am. Chem. Soc. 2007; 129: 2752
    • 7d Lee J.-Y, Miller JJ, Hamilton SS, Sigman MS. Org. Lett. 2005; 7: 1837
  • 8 Spielmann K, Niel G, de Figueiredo RM, Campagne J.-M. Chem. Soc. Rev. 2018; 47: 1159
  • 9 Tsuji Y, Mukai T, Kondo T, Watanabe Y. J. Organomet. Chem. 1989; 369: C51
    • 10a Kim IS, Ngai M.-Y, Krische MJ. J. Am. Chem. Soc. 2008; 130: 6340
    • 10b Kim IS, Ngai M.-Y, Krische MJ. J. Am. Chem. Soc. 2008; 130: 14891
    • 10c Han SB, Kim IS, Krische MJ. Chem. Commun. 2009; 7278
    • 10d Lu Y, Kim I.-S, Hassan A, Del Valle DJ, Krische MJ. Angew. Chem. Int. Ed. 2009; 48: 5018
    • 10e Hassan A, Lu Y, Krische MJ. Org. Lett. 2009; 11: 3112
    • 10f Schmitt DC, Dechert-Schmitt A.-MR, Krische MJ. Org. Lett. 2012; 14: 6302
    • 10g Garza VJ, Krische MJ. J. Am. Chem. Soc. 2016; 138: 3655
    • 10h Cabrera JM, Tauber J, Krische MJ. Angew. Chem. Int. Ed. 2018; 57: 1390
    • 10i Kim SW, Wurm T, Brito GA, Jung W.-O, Zbieg JR, Stivala CE, Krische MJ. J. Am. Chem. Soc. 2018; 140: 9087
    • 10j Cabrera JM, Tauber J, Zhang W, Xiang M, Krische MJ. J. Am. Chem. Soc. 2018; 140: 9392
    • 10k Kim SW, Schwartz LA, Zbieg JR, Stivala CE, Krische MJ. J. Am. Chem. Soc. 2019; 141: 671
    • 10l Brito GA, Jung W.-O, Yoo M, Krische MJ. Angew. Chem. Int. Ed. 2019; 58: 18803

      For selected recent examples of Krische allylation in natural product synthesis, see:
    • 11a Ketcham JM, Volchkov I, Chen T.-Y, Blumberg PM, Kedei N, Lewin NE, Krische MJ. J. Am. Chem. Soc. 2016; 138: 13415
    • 11b Shin I, Hong S, Krische MJ. J. Am. Chem. Soc. 2016; 138: 14246
    • 11c Roane J, Wippich J, Ramgren SD, Krische MJ. Org. Lett. 2017; 19: 6634
    • 11d Cabrera JM, Krische MJ. Angew. Chem. Int. Ed. 2019; 58: 10718
    • 12a Denmark SE, Nguyen ST. Org. Lett. 2009; 11: 781
    • 12b Denmark SE, Matesich ZD, Nguyen ST, Sephton SM. J. Org. Chem. 2018; 83: 23
  • 13 Ishida S, Suzuki H, Uchida S, Yamaguchi E, Itoh A. Eur. J. Org. Chem. 2019; 7483

    • For reviews on reductive coupling, see:
    • 14a Carnahan EM, Protasiewicz JD, Lippard SJ. Acc. Chem. Res. 1993; 26: 90
    • 14b Montgomery J. Angew. Chem. Int. Ed. 2004; 43: 3890
    • 14c Reichard HA, McLaughlin M, Chen MZ, Micalizio GC. Eur. J. Org. Chem. 2010; 391
    • 14d Holmes M, Schwartz LA, Krische MJ. Chem. Rev. 2018; 118: 6026
    • 14e Waldvogel SR, Lips S, Selt M, Riehl B, Kampf CJ. Chem. Rev. 2018; 118: 6706

    • For selected examples of the reductive coupling reaction, see:
    • 14f Durandetti M, Gosmini C, Périchon J. Tetrahedron 2007; 63: 1146
    • 14g Tan Z, Wan X, Zang Z, Qian Q, Deng W, Gong H. Chem. Commun. 2014; 50: 3827
    • 14h Zhao C, Tan Z, Liang Z, Deng W, Gong H. Synthesis 2014; 46: 1901
    • 14i Wotal AC, Ribson RD, Weix DJ. Organometallics 2014; 33: 5874
    • 14j Caputo JA, Naoddovic M, Weix DJ. Synlett 2015; 26: 323
    • 14k Hansen EC, Li C, Yang S, Pedro D, Weix DJ. J. Org. Chem. 2017; 82: 7085
    • 14l Huihui KM. M, Shrestha R, Weix DJ. Org. Lett. 2017; 17: 340
    • 14m Garcia KJ, Gilbert MM, Weix DJ. J. Am. Chem. Soc. 2019; 141: 1823
    • 14n Perkins RJ, Hughes AJ, Weix DJ, Hansen EC. Org. Process Res. Dev. 2019; 23: 1746
    • 14o Gualandi A, Rodeghiero G, Faraone A, Patuzzo F, Marchini M, Calogero F, Perciaccante R, Jansen TP, Ceroni P, Cozzi PG. Chem. Commun. 2019; 55: 6838
  • 15 The full details of the optimization studies are summarized in the Supporting Information.
  • 16 When 1h was used as the substrate, a mixture of 3ha and reduction product 3da was obtained.
  • 17 Yadav JS, Reddy BV. S, Krishna AD, Sadasiv K, Chary CJ. Chem. Lett. 2003; 32: 248
  • 18 Under allylation conditions, the reaction without allyl acetate gave the corresponding aldol product in the case of aliphatic aldehydes.
  • 19 The evaluation of allyl acetate derivatives is summarized in the Supporting Information.
    • 20a Kobayashi Y, Ikeda E. J. Chem. Soc., Chem. Commun. 1994; 1789
    • 20b Trost BM, Spagnol MD. J. Chem. Soc., Perkin Trans. 1 1995; 2083
    • 20c Usmani SB, Takahisa E, Kobayashi Y. Tetrahedron Lett. 1998; 39: 601
  • 21 When the reaction was performed using a stoichiometric amount of Ni(cod)2/bipyridyl without Zn0, the desired reaction did not proceed. Therefore, the possibility that the formation of an allylzinc species is the key to the progress of the reaction cannot be ruled out at this time. The result was added to the Supporting Information.
  • 22 Clot-Almenara L, Rodríguez-Escrich C, Osorio-Planes L, Pericas MA. J. Am. Chem. Soc. 2016; 6: 7647
  • 23 Kaib PS. J, Schreyer L, Lee S, Properzi R, List B. Angew. Chem. Int. Ed. 2016; 55: 13200
  • 24 Jain P, Antilla JC. J. Am. Chem. Soc. 2010; 132: 11884
  • 25 Sevrain N, Volle J.-N, Pirat J.-L, Ayad T, Virieux D. Eur. J. Org. Chem. 2018; 2267
  • 26 Yin J, Stark RT, Fallis IA, Browne DL. J. Org. Chem. 2020; 85: 2347
  • 27 Li G.-I, Zhao G. J. Org. Chem. 2005; 11: 4272
  • 28 Kumar VP, Chandrasekhar S. Org. Lett. 2013; 15: 3610