Synthesis 2020; 52(23): 3650-3656
DOI: 10.1055/s-0040-1706423
paper
© Georg Thieme Verlag Stuttgart · New York

Divergent and Diastereoselective Synthesis of α-Monosubstituted and trans-α,β-Disubstituted γ-Lactams from (S)-N,N-Dibenzyl-α-amino Aldehydes via Henry and Michael Reactions

Francine P. Meirelis
,
Bruna G. N. Vieira
,
Vera L. P. Pereira
Instituto de Pesquisas de Produtos Naturais, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Bloco H, Cidade Universitária, 21941-902, Rio de Janeiro, Brazil   Email: patrocinio.ufrj@gmail.com
› Author Affiliations
Further Information

Publication History

Received: 07 July 2020

Accepted after revision: 20 July 2020

Publication Date:
24 August 2020 (online)


Abstract

γ-Monosubstituted and trans-α,β-disubstituted γ-lactams were diastereoselectively synthesized from common intermediates (S)-N,N-dibenzylated aldehydes derived from natural l-(α)-amino acids, employing a divergent approach. The key features of the routes include diastereoselective Henry and Michael reactions that produced chiral γ-nitroester derivatives, which were subsequently submitted to a tandem reduction-lactamization sequence providing the title compounds. The versatility of routes can allow the preparation of several other mono-, di-, or tri-substituted γ-lactams.

Supporting Information

 
  • References

    • 1a Caruano J, Mucciolib GG, Robiette R. Org. Biomol. Chem. 2016; 14: 10134
    • 1b Nay B, Riache N, Evanno L. Nat. Prod. Rep. 2009; 26: 1044
    • 1c Wei B, Li K-W, Wu Y-C, Tong S-Q, Song R-J. Synthesis 2020; 52: in press; DOI: 10.1055/s-0040-1707835
    • 1d Rivas F, Ling T. Org. Prep. Proced. Int. 2016; 48: 254
    • 1e Martelli G, Monsignori A, Orena M, Rinaldi S. Curr. Org. Chem. 2014; 18: 1539
    • 1f Meazza M, Companyó X, Rios R. Asian J. Org. Chem. 2018; 7: 1934
    • 1g Martinez de Marigorta E, de los Santos J, Ochoa de Retana AM, Vicario J, Palacios F. Synthesis 2018; 50: 4539
    • 1h Martinez de Marigorta E, de los Santos J, Ochoa de Retana AM, Vicario J, Palacios F. Beilstein J. Org. Chem. 2019; 150: 1065
    • 1i Lorenc C, Vibbert HB, Yao C, Norton JR, Rauch M. ACS Catal. 2019; 9: 10294
    • 2a Barbaro P, Liguori F, Oldani C, Moreno-Marrodán C. Adv. Sustainable Syst. 2020; 5: 1900117
    • 2b Moreno-Marrodan C, Liguori F, Barbaro P. Mol. Catal. 2019; 466: 60
    • 2c Jouyban A, Fakhree MA. A, Shayanfar A. J. Pharm. Pharmaceut. Sci. 2010; 13: 524
    • 2d Ring-Opening Polymerization of Cyclic Amides (Lactams) . In Polymer Science: A Comprehensive Reference, Vol. 4. Russo S, Casazza E, Penczek S, Grubbs R. Elsevier; Amsterdam: 2013: 331-396
    • 3a Manam RR, Teisan S, White DJ, Nicholson B, Grodberg J, Neuteboom ST. C, Lam KS, Mosca DA, Lloyd GK, Potts BC. M. J. Nat. Prod. 2005; 68: 240
    • 3b Ko K, Lee S.-H, Kim S.-H, Kim E.-H, Oh K.-B, Shin J, Oh D.-C. J. Nat. Prod. 2014; 77: 2099
    • 4a Lin W.-H, Ye Y, Xu R.-S. J. Nat. Prod. 1992; 55: 571
    • 4b Wang Y.-Z, Tang C.-P, Dien P.-H, Ye Y. J. Nat. Prod. 2007; 70: 1356
    • 4c Yoritate M, Takahashi Y, Tajima H, Ogihara C, Yokoyama T, Soda Y, Oishi T, Sato T, Chida N. J. Am. Chem. Soc. 2017; 139: 18386
  • 5 Li JY, Strobel G, Harper J, Lobkovsky E, Clardy J. Org. Lett. 2000; 2: 767
  • 6 Lyseng-Williamson KA. Drugs 2011; 71: 489
  • 7 Dineva S, Uzunova K, Pavlova V, Filipova E, Kalinov K, Vekov T. J. Hum. Hypertens. 2019; 33: 766
  • 8 Wei J, Shaw JT. Org. Lett. 2007; 9: 4077
  • 9 Soleimani-Amiri S, Vessally E, Babazadeh M, Hosseiniand A, Edjlalic L. RSC Adv. 2017; 7: 28407
  • 10 Park J.-H, Ha J.-R, Oh S.-J, Kim J.-A, Shin D.-S, Won T.-J, Lam Y.-F, Ahn C. Tetrahedron Lett. 2005; 46: 1755
  • 11 Peng X, Wang H.-H, Cao F, Zhang H.-H, Lu Y.-M, Hu X.-L, Tan W, Wang Z. Org. Chem. Front. 2019; 6: 1837
  • 12 Hong SY, Park Y, Hwang Y, Kim YB, Baik M.-H, Chang S. Science 2018; 359: 1016
  • 13 Ye L-W, Shu C, Gagosz F. Org. Biomol. Chem. 2014; 12: 1833
  • 14 Gondal HM, Buisson D. Chem. Heterocycl. Comp. 2016; 52: 183
  • 15 Borja-Miranda A, Sánchez-Chávez AC, Polindara-García LA. Eur. J. Org. Chem. 2019; 2453
  • 16 Luzzio FA. Tetrahedron 2001; 57: 915
  • 17 Palomo C, Oiarbide M, Mielgo A. Angew. Chem. Int. Ed. 2004; 43: 5442
  • 18 Boruwa J, Gogoi N, Saikia PP, Barua NC. Tetrahedron: Asymmetry 2006; 17: 3315
  • 19 Palomo C, Oiarbide M, Laso A. Eur. J. Org. Chem. 2007; 2561
  • 20 Dong L, Chen F-E. RSC Adv. 2020; 10: 2313
  • 21 Singh N, Pandey J. Mini-Rev. Org. Chem. 2020; 17: 297
  • 22 Zhang S, Li Y, Xu Y, Wang Z. Chin. Chem. Let. 2018; 29: 873
  • 23 Sappino C, Primitivo L, De Angelis M, Domenici MO, Mastrodonato A, Romdan IB, Tatangelo C, Suber L, Pilloni L, Ricelli A, Righi G. ACS Omega 2019; 4: 21809
  • 24 Reznikov AN, Klimochkin YN. Synthesis 2020; 52: 781
  • 25 Li Y, Yu J, Bi Y, Yan G, Huang D. Adv. Synth. Catal. 2019; 361: 4839
  • 26 Ballini R, Bosica G, Fiorini D, Palmieri A, Petrini M. Chem. Rev. 2005; 105: 933
  • 27 Turova MG, Sergeio OG, Zlotin SG. Org. Biomol. Chem. 2019; 17: 3670
  • 28 Pellissier H. Curr. Org. Chem. 2018; 22: 323
  • 29 Byrd KM. Beilstein J. Org. Chem. 2015; 11: 530
  • 30 Zheng K, Liu X, Feng X. Chem. Rev. 2018; 118: 7586
  • 31 Pereira VL. P, Moura AL. S, Vieira DP. P, Carvalho LL, Torres ER. B, Costa JS. Beilstein J. Org. Chem. 2013; 9: 832
  • 32 de Carvalho LL, Burrow RA, Pereira VL. P. Beilstein J. Org. Chem. 2013; 9: 838
  • 33 Barreto CB. Jr, Pereira VL. P. Tetrahedron Lett. 2009; 50: 6389
  • 34 Pennaforte EV, Costa JS, Silva CA, Saraiva MC, Pereira VL. P. Parte superior do formulárioLett. Org. Chem. 2009; 6: 110
  • 35 Costa JS, Freire BS, Moura AL. S, Pereira VL. P. J. Braz. Chem. Soc. 2006; 17: 1229
  • 36 Pinto AC, Freitas CB. L, Dias AG, Pereira VL. P, Tinant B, Declercq J.-P, Costa PR. R. Tetrahedron: Asymmetry 2002; 13: 1025
  • 37 Silva PC, Costa JS, Pereira VL. P. Synth. Commun. 2001; 31: 595
  • 38 Costa JS, Dias AG, Anholeto AL, Monteiro MD, Patrocinio VL, Costa PR. R. J. Org. Chem. 1997; 62: 4002
  • 39 Patrocinio VL, Costa PR. R, Correia CR. D. Synthesis 1994; 474
  • 40 Reetz MT. Chem. Rev. 1999; 99: 1121
  • 41 Reetz MT, Drewes MW, Schwickardi R. Org. Synth. Coll. Vol. 10 . Wiley; New York: 2004: 256-262
  • 42 Hanessian S, Devasthale PV. Tetrahedron Lett. 1996; 37: 987
  • 43 Hynes PS, Stupple PA, Dixon DJ. Org. Lett. 2008; 10: 1389
  • 44 Chasar DW. Synthesis 1982; 841
  • 45 Drinan MA, Lash TD. J. Heterocycl. Chem. 1994; 31: 255
  • 46 Shakirov RR, Yarmukhamedov NN, Vlasova LI, Baibulatova NZ, Khisamutdinova RYu, Gabdrakhmanova SF, Karachurina LT, Baschenko NZh. Pharm. Chem. J. 2006; 40: 29
  • 47 Escalante J, Diaz-Coutinho FD. Molecules 2009; 14: 1595
  • 48 Ballini R, Bosica G, Forconi P. Tetrahedron 1996; 52: 1677
  • 49 Yeom C-E, Kim MJ, Kim BM. Tetrahedron 2007; 63: 904
  • 50 Tehri P, Peddinti RK. Org. Biomol. Chem. 2019; 17: 3964
  • 51 Fedotova A, Crousse B, Chataigner I, Maddaluno J, Rulev AY, Legros J. J. Org. Chem. 2015; 80: 10375
  • 52 Ahn NT, Eisenstein O. Tetrahedron Lett. 1976; 155
  • 53 Burgi HB, Dunitz JD, Lehn JM, Wipff G. Tetrahedron 1974; 30: 1563
  • 54 Bernardi A, Micheli F, Potenza D, Scolastico C, Villa R. Tetrahedron Lett. 1990; 31: 4949
  • 55 Simas AB. C, Pereira VL. P, Barreto CB. Jr, de Sales DL, de Carvalho LL. Quim. Nova 2009; 32: 2473