Synthesis 2021; 53(01): 146-160
DOI: 10.1055/s-0040-1706424
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Aminoalkyl-Functionalized 4-Arylquinolines from 2-(3,4-Dihydroisoquinolin-1-yl)anilines via the Friedländer Reaction

Institute of Technical Chemistry UB RAS, 3 Akademika Korolyeva St., Perm 614013, Russian Federation   Email: rjs@mail.ru
,
Tatyana S. Storozheva
,
Irina V. Plekhanova
,
Alexey A. Gorbunov
,
Andrej A. Smolyak
,
Yurii V. Shklyaev
› Author Affiliations
This work was financially supported by the Russian Foundation for Basic Research (grant 16-03-00561) and the Ministry of Science and Higher Education of the Russian Federation (project АААА-А18-118033090090-0).
Further Information

Publication History

Received: 12 April 2020

Accepted after revision: 27 July 2020

Publication Date:
01 September 2020 (online)


Abstract

A new approach for the efficient and convenient synthesis of novel aminoalkyl-functionalized 4-arylquinolines via the Friedländer reaction of differently substituted 2-(3,4-dihydroisoquinolin-1-yl)anilines with various α-methylene ketones in acetic acid was developed. The reaction allows easy access to a diversity of 4-arylquinoline derivatives in moderate to excellent yields under mild conditions.

Supporting Information

 
  • References


    • For selected reviews on the biological activity of synthetic and natural quinolines, see:
    • 1a Syed MA. H. Expert Opin. Ther. Pat. 2016; 26: 1201
    • 1b Razzaghi-Asl N, Sepehri S, Ebadi A, Karami P, Nejatkhah N, Johari-Ahar M. Mol. Diversity 2020; 24: 525
    • 1c Musiol R. Expert Opin. Drug Discovery 2017; 12: 583
    • 1d Afzal O, Kumar S, Haider MR, Ali MR, Kumar R, Jaggi M, Bawa S. Eur. J. Med. Chem. 2015; 97: 871
    • 1e Püsküllü MO, Tekiner B, Suzen S. Mini-Rev. Med. Chem. 2013; 13: 365
    • 1f Singh S, Kaur G, Mangla V, Gupta MK. J. Enzyme Inhib. Med. Chem. 2015; 30: 492
    • 1g Kaur K, Jain M, Reddy RP, Jain R. Eur. J. Med. Chem. 2010; 45: 3245
    • 1h Fan Y.-L, Cheng X.-W, Wu J.-B, Liu M, Zhang F.-Z, Xu Z, Feng L.-S. Eur. J. Med. Chem. 2018; 146: 1
    • 1i Hu Y.-Q, Gao C, Zhang S, Xu L, Xu Z, Feng L.-S, Wu X, Zhao F. Eur. J. Med. Chem. 2017; 139: 22
    • 1j Chung P.-Y, Bian Z.-X, Pun H.-Y, Chan D, Chan AS.-C, Chui C.-H, Tang JC.-O, Lam K.-H. Future Med. Chem. 2015; 7: 947
    • 1k Shang X.-F, Morris-Natschke SL, Liu Y.-Q, Guo X, Xu X.-S, Goto M, Li J.-C, Yang G.-Z, Lee K.-H. Med. Res. Rev. 2018; 38: 775
    • 1l Shang X.-F, Morris-Natschke SL, Yang G.-Z, Liu Y.-Q, Guo X, Xu X.-S, Goto M, Li J.-C, Zhang J.-Y, Lee K.-H. Med. Res. Rev. 2018; 38: 1614

      For selected reviews on recent advances in the synthesis of quinolines, see:
    • 2a Ramann GA, Cowen BJ. Molecules 2016; 21: 986
    • 2b Sharma R, Kour P, Kumar A. J. Chem. Sci. 2018; 130: 73
    • 2c Nainwal LM, Tasneem S, Akhtar W, Verma G, Khan MF, Parvez S, Shaquiquzzaman M, Akhter M, Alam MM. Eur. J. Med. Chem. 2019; 164: 121
    • 2d Li L.-H, Niu Z.-J, Liang Y.-M. Chem. Asian J. 2020; 15: 231
    • 2e Orozco D, Kouznetsov VV, Bermúdez A, Vargas Méndez LY, Mendoza Salgado AR, Meléndez Gómez CM. RSC Adv. 2020; 10: 4876
  • 3 Pflum DA. Friedländer Quinoline Synthesis . In Name Reactions in Heterocyclic Chemistry . Li J.-J, Corey EJ. Wiley-Interscience/John Wiley & Sons Inc; Hoboken: 2005: 411-415

    • For reviews on the Friedländer reaction, see:
    • 4a Cheng C.-C, Yan S.-I. Org. React. 1982; 28: 37
    • 4b Marco-Contelles J, Pérez-Mayoral E, Samadi A, do Carmo Carreiras M, Soriano E. Chem. Rev. 2009; 109: 2652
    • 4c Shiria M, Zolfigol MA, Kruger HG, Tanbakouchian Z. Adv. Heterocycl. Chem. 2011; 102: 139
    • 4d Fallah-Mehrjardi M. Mini-Rev. Org. Chem. 2017; 14: 187

      For some recent examples of the Friedländer reaction, see:
    • 5a Chan C.-K, Lai C.-Y, Wang C.-C. Synthesis 2020; 52: 1779
    • 5b Shao Y.-D, Dong M.-M, Wang Y.-A, Cheng P.-M, Wang T, Cheng D.-J. Org. Lett. 2019; 21: 4831
    • 5c Das A, Anbu N, Varalakshmi P, Dhakshinamoorthy A, Biswas S. New J. Chem. 2020; 44: 10982
    • 5d Barman MK, Jana A, Maji B. Adv. Synth. Catal. 2018; 360: 3233
    • 5e Chan C.-K, Lai C.-Y, Lo W.-C, Cheng Y.-T, Chang M.-Y, Wang C.-C. Org. Biomol. Chem. 2020; 18: 305
    • 5f Rahul P, Nitha PR, Omanakuttan VK, Babu SA, Sasikumar P, Praveen VK, Hopf H, John J. Eur. J. Org. Chem. 2020; 3081
    • 6a Borsche W, Barthenheier J. Justus Liebigs Ann. Chem. 1941; 548: 50
    • 6b Borsche W, Ried W. Justus Liebigs Ann. Chem. 1943; 554: 269
    • 7a Sridharan V, Ribelles P, Ramos MT, Menéndez JC. J. Org. Chem. 2009; 74: 5715
    • 7b Patteux C, Levacher V, Dupas G. Org. Lett. 2003; 5: 3061
    • 7c Mezhnev VV, Dutov MD, Sapozhnikov OY, Kachala VV, Shevelev SA. Mendeleev Commun. 2007; 17: 234
    • 7d Leleu S, Papamicaël C, Marsais F, Dupas G, Levacher V. Tetrahedron: Asymmetry 2004; 15: 3919
    • 7e Vicente J, Chicote MT, Martínez-Martínez AJ. Tetrahedron Lett. 2011; 52: 6298
    • 7f Vitry C, Vasse J.-L, Dupas G, Levacher V, Quéguiner G, Bourguignon J. Tetrahedron 2001; 57: 3087
    • 7g Beale SC, Hsieh Y.-Z, Wiesler D, Novotny M. J. Chromatogr., A 1990; 499: 579
    • 8a Vasse J.-L, Levacher V, Bourguignon J, Dupas G. Tetrahedron 2003; 59: 4911
    • 8b Baumgarten HE, Barkley RP, Chiu S.-HL, Thompson RD. J. Heterocycl. Chem. 1981; 18: 925

      For selected examples, see:
    • 9a Wang S, Coburn CA, Bornmann WG, Danishefsky SJ. J. Org. Chem. 1993; 58: 611
    • 9b Ejima A, Terasawa H, Sugimori M, Tagawa H. J. Chem. Soc., Perkin Trans. 1 1990; 27
    • 9c Shen W, Grillet F, Sabot C, Anderson R, Babjak M, Greene AE, Kanazawa A. Tetrahedron 2011; 67: 2579
    • 10a Ma Z.-Z, Hano Y, Nomura T, Chen Y.-J. Heterocycles 1999; 51: 1953
    • 10b Gavara L, Boisse T, Hénichart J.-P, Daïch A, Rigo B, Gautret P. Tetrahedron 2010; 66: 7544

      For selected examples, see:
    • 11a Lerchen A, Knecht T, Koy M, Daniliuc CG, Glorius F. Chem. Eur. J. 2017; 23: 12149
    • 11b Brunin T, Hénichart J.-P, Rigo B. Tetrahedron 2005; 61: 7916
    • 11c Yoneda R, Kimura T, Harusawa S, Kurihara T. Heterocycles 1997; 46: 357
    • 11d Babjak M, Kanazawa A, Anderson RJ, Greene AE. Org. Biomol. Chem. 2006; 4: 407
    • 11e Boisse T, Gavara L, Gautret P, Baldeyrou B, Lansiaux A, Goossens J.-F, Hénichart J.-P, Rigo B. Tetrahedron Lett. 2011; 52: 1592
    • 12a Luo F.-T, Ravi VK, Xue C. Tetrahedron 2006; 62: 9365
    • 12b Mamedov VA, Kadyrova SF, Zhukova NA, Galimullina VR, Polyancev FM, Latypov SK. Tetrahedron 2014; 70: 5934
  • 13 CCDC 1945600 (3a) and 1945601 (3ad) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 14 Slowinski F, Ben Ayad O, Vache J, Saady M, Leclerc O, Lochead A. J. Org. Chem. 2011; 76: 8336