Synthesis 2021; 53(12): 2092-2102
DOI: 10.1055/s-0040-1706684
paper

Stereoselective Convergent Synthesis of Carbon Skeleton of Cotylenin A Aglycone

Motoi Kuwabara
,
Ami Matsuo
,
Shogo Kamo
,
Akinobu Matsuzawa
,
This work was financially supported by the Japan Society for the Promotion of Science (JSPS KAKENHI Grant Numbers JP16K08180, JP18K14876, JP19K06981) and a Nagai Memorial Research Scholarship from the Pharmaceutical Society of Japan.


Abstract

In this paper, the synthesis of the carbon skeleton of cotylenin A aglycone is described. The key reactions, including an intramolecular aldol reaction, an aldol coupling reaction, and a ring-closing meta­thesis, allow for the effective and stereoselective access to the carbon skeleton of cotylenin A aglycone. The stereochemistry was confirmed by single-crystal X-ray crystallographic analyses of related compounds.

Supporting Information



Publication History

Received: 08 December 2020

Accepted after revision: 28 December 2020

Article published online:
01 February 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Sassa T. Agric. Biol. Chem. 1970; 34: 1588
    • 1b Sassa T, Togashi M, Kitaguchi T. Agric. Biol. Chem. 1975; 39: 1735
    • 1c Sassa T, Ooi T, Nukina M, Ikeda M, Kato N. Biosci., Biotechnol., Biochem. 1998; 62: 1815
  • 2 Ottmann C, Weyand M, Sassa T, Inoue T, Kato T, Wittinghofer A, Oecking C. J. Mol. Biol. 2009; 386: 913
  • 3 Venkatesan K, Rual J.-F, Vazquez A, Stelzl U, Lemmens I, Hirozane-Kishikawa T, Hao T, Zenkner M, Xin X, Goh K.-I, Yildirim MA, Simonis N, Heinzmann K, Gebreab F, Sahalie JM, Cevik S, Simon C, de Smet A.-S, Dann E, Smolyar A, Vinayagam A, Yu H, Szeto D, Borick H, Dricot A, Klitgord N, Murray RR, Lin C, Lalowski M, Timm J, Rau K, Boone C, Braun P, Cusick ME, Roth FP, Hill DE, Tavernier J, Wanker EE, Barabási A.-L, Vidal M. Nat. Methods 2009; 6: 83
  • 4 Moore BW. In Physiological and Biochemical Aspects of Nervous Integration . Carlson FD. Prentice Hall; Englewood Cliffs: 1967: 343
  • 5 Schumacher B, Mondry J, Thiel P, Weyand M, Ottmann C. FEBS Lett. 2010; 584: 1443
  • 6 Rose R, Erdmann S, Bovens S, Wolf A, Rose M, Hennig S, Waldmann H, Ottmann C. Angew. Chem. Int. Ed. 2010; 49: 4129
    • 7a Asahi K, Honma Y, Hazeki K, Sassa T, Kubohara Y, Sakurai A, Takahashi N. Biochem. Biophys. Res. Commun. 1997; 238: 758
    • 7b Yamamoto Y, Yamada K, Ishii Y, Asahi K, Tomoyasu S, Honma Y. Brit. J. Haematol. 2001; 112: 697
  • 8 Kuwata K, Hanaya K, Higashibayashi S, Sugai T, Shoji M. Tetrahedron 2017; 73: 6039
    • 9a Kato N, Nakanishi K, Takeshita H. Bull. Chem. Soc. Jpn. 1986; 59: 1109
    • 9b Okamoto H, Arita H, Kato N, Takeshita H. Chem. Lett. 1994; 23: 2335
    • 9c Kato N, Okamoto H, Takeshita H. Tetrahedron 1996; 52: 3921
  • 10 Uwamori M, Osada R, Sugiyama R, Nagatani K, Nakada M. J. Am. Chem. Soc. 2020; 142: 5556
  • 11 Geoghegan K, Evans P. Tetrahedron Lett. 2014; 55: 1431
  • 12 Abbott JR, Allais C, Roush WR. Org. Synth. 2015; 92: 26
  • 13 Hajos ZG, Parrish DR. J. Org. Chem. 1974; 39: 1915
  • 14 CCDC 2048792 (18) and 2048793 (25) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures. A summary of the crystallographic analysis and the crystal structure is provided in the Supporting Information.
  • 15 The structure of dimer of 3 was inferred from crude MS and NMR spectroscopy.
    • 16a Damien B, Ange P, Steven PN, Joelle P. J. Organomet. Chem. 2002; 643–644: 247
    • 16b Fustero S, Sánchez-Roselló M, Jiménez D, Sanz-Cervera JF, del Pozo C, Aceña JL. J. Org. Chem. 2006; 71: 2706