CC BY 4.0 · Synlett 2020; 31(15): 1507-1510
DOI: 10.1055/s-0040-1707080
letter
(2020) The Author(s)

2-Aminoquinazolines by Chan–Evans–Lam Coupling of Guanidines with (2-Formylphenyl)boronic Acids

Vitalii V. Solomin
a   Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia   Email: aigars@osi.lv
b   Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga LV-1048, Latvia
,
Alberts Seins
a   Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia   Email: aigars@osi.lv
b   Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga LV-1048, Latvia
,
a   Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia   Email: aigars@osi.lv
b   Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga LV-1048, Latvia
› Author Affiliations
H2020 MSC-ITN project CARTNET “Combating Antimicrobial Resistance Training Network”, Grant agreement ID: 765147
Further Information

Publication History

Received: 30 April 2020

Accepted after revision: 10 June 2020

Publication Date:
08 July 2020 (online)


Abstract

A new method is presented for the synthesis of 2-aminoquinazolines, which is based on a Chan–Evans–Lam coupling of (2-formylphenyl)boronic acids with guanidines. Relatively mild conditions involving the use of inexpensive CuI as a catalyst and methanol as a solvent permit the application of the method to a wide range of substrates. Nonsubstituted, N-monosubstituted, and N,N-disubstituted guanidines can be used as reactants to give the corresponding 2-aminoquinazolines in moderate yields from readily available (2-formylphenyl)boronic acids.

Supporting Information

 
  • References and Notes

  • 1 Bathini Y, Singh I, Harvey PJ, Keller PR, Singh R, Micetich RG, Fry DW, Dobrusin EM, Toogood PL. Bioorg. Med. Chem. Lett. 2005; 15: 3881
  • 2 Esvan YJ, Zeinyeh W, Boibessot T, Nauton L, Théry V, Knapp S, Chaikuad A, Loaëc N, Meijer L, Anizon F, Giraud F, Moreau P. Eur. J. Med. Chem. 2016; 118: 170
  • 3 Zeinyeh W, Esvan YJ, Josselin B, Baratte B, Bach S, Nauton L, Théry V, Ruchaud S, Anizon F, Giraud F, Moreau P. Bioorg. Med. Chem. 2019; 27: 2083
  • 4 DiMauro EF, Newcomb J, Nunes JJ, Bemis JE, Boucher C, Buchanan JL, Buckner WH, Cee VJ, Chai L, Deak HL, Epstein LF, Faust T, Gallant P, Geuns-Meyer SD, Gore A, Gu Y, Henkle B, Hodous BL, Hsieh F, Huang X, Kim JL, Lee JH, Martin MW, Masse CE, McGowan DC, Metz D, Mohn D, Morgenstern KA, Oliveira-dos-Santos A, Patel VF, Powers D, Rose PE, Schneider S, Tomlinson SA, Tudor Y.-Y, Turci SM, Welcher AA, White RD, Zhao H, Zhu L, Zhu X. J. Med. Chem. 2006; 49: 5671
  • 5 Vasbinder MM, Aquila B, Augustin M, Chen H, Cheung T, Cook D, Drew L, Fauber BP, Glossop S, Grondine M, Hennessy E, Johannes J, Lee S, Lyne P, Mörtl M, Omer C, Palakurthi S, Pontz T, Read J, Sha L, Shen M, Steinbacher S, Wang H, Wu A, Ye M. J. Med. Chem. 2013; 56: 1996
  • 6 Li C, Shan Y, Sun Y, Si R, Liang L, Pan X, Wang B, Zhang J. Eur. J. Med. Chem. 2017; 141: 506
  • 7 Li J.-S, Fan Y.-H, Zhang Y, Marky LA, Gold B. J. Am. Chem. Soc. 2003; 125: 2084
  • 8 Bathini Y, Sidhu I, Singh R, Micetich RG, Toogood PL. Tetrahedron Lett. 2002; 43: 3295
  • 9 Chen X, Han J, Zhu Y, Yuan C, Zhang J, Zhao Y. Chem. Commun. 2016; 52: 10241
  • 10 Liu Q, Zhao Y, Fu H, Cheng C. Synlett 2013; 24: 2089
  • 11 Sasse K. Synthesis 1978; 379
  • 12 Kikelj D. In Science of Synthesis, Vol. 16. Yamamoto Y, Shinkai I. Thieme; Stuttgart: 2004. Chap. 16.3 573
  • 13 Babu DS, Srinivasulu D, Kotakadi VS. Chem. Heterocycl. Compd. 2015; 51: 60
  • 14 Smith AL, Andrews KL, Beckmann H, Bellon SF, Beltran PJ, Booker S, Chen H, Chung Y.-A, D’Angelo ND, Dao J, Dellamaggiore KR, Jaeckel P, Kendall R, Labitzke K, Long AM, Materna-Reichelt S, Mitchell P, Norman MH, Powers D, Rose M, Shaffer PL, Wu MM, Lipford JR. J. Med. Chem. 2015; 58: 1426
  • 15 Pandya AN, Villa EM, North EJ. Tetrahedron Lett. 2017; 58: 1276
  • 16 Zhou G, Aslanian R, Gallo G, Khan T, Kuang R, Purakkattle B, Ruiz MD, Stamford A, Ting P, Wu H, Wang H, Xiao D, Yu T, Zhang Y, Mullins D, Hodgson R. Bioorg. Med. Chem. Lett. 2016; 26: 1348
  • 17 Bollenbach M, Salvat E, Daubeuf F, Wagner P, Yalcin I, Humo M, Letellier B, Becker LJ, Bihel F, Bourguignon J.-J, Villa P, Obrecht A, Frossard N, Barrot M, Schmitt M. Eur. J. Med. Chem. 2018; 147: 163
  • 18 Huang KH, Barta TE, Rice JW, Smith ED, Ommen AJ, Ma W, Veal JM, Fadden RP, Barabasz AF, Foley BE, Hughes PF, Hanson GJ, Markworth CJ, Silinski M, Partridge JM, Steed PM, Hall SE. Bioorg. Med. Chem. Lett. 2012; 22: 2550
  • 19 Huang X, Yang H, Fu H, Qiao R, Zhao Y. Synthesis 2009; 2679
  • 20 Chan DM. T, Monaco KL, Wang R.-P, Winters MP. Tetrahedron Lett. 1998; 39: 2933
  • 21 Evans DA, Katz JL, West TR. Tetrahedron Lett. 1998; 39: 2937
  • 22 Lam PY. S, Clark CG, Saubern S, Adams J, Winters MP, Chan DM. T, Combs A. Tetrahedron Lett. 1998; 39: 2941
  • 23 Chen J.-Q, Liu X, Guo J, Dong Z.-B. Eur. J. Org. Chem. 2020; 2414
  • 24 Liu X, Dong Z.-B. J. Org. Chem. 2019; 84: 11524
  • 25 Rodrigues R, Tran LQ, Darses B, Dauban P, Neuville L. Adv. Synth. Catal. 2019; 361: 4454
  • 26 Quinazolin-2-amine (3); Typical Procedure A mixture of guanidine hydrochloride (2a; 765 mg, 8 mmol) and KOH (441 mg, 8 mmol) was dissolved in MeOH (30 mL) and the mixture was stirred for 10 min at r.t. (2-Formylphenyl)boronic acid (1; 400 mg, 2.67 mmol) was added in one portion followed by CuI (76 mg, 0.4 mmol), and the resulting mixture was heated at 70 °C overnight. The mixture was then concentrated under reduced pressure and partitioned between aq NH3 (30 mL) and EtOAc (120 mL). The organic layer washed with brine, dried (Na2SO4), and concentrated under reduced pressure. The crude product was purified by trituration with EtOAc (3 mL) to give a slightly beige solid; yield: 198 mg (51%); mp 194–196 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 9.10 (s, 1 H), 7.78 (d, J = 8.9 Hz, 1 H), 7.67 (t, J = 8.5 Hz, 1 H), 7.41 (d, J = 8.4 Hz, 1 H), 7.21 (t, J = 7.9 Hz, 1 H), 6.82 (s, 2 H). 13C NMR (101 MHz, DMSO-d 6): δ = 162.4, 160.9, 151.2, 134.1, 127.9, 124.5, 122.0, 119.5. LC/MS: m/z [M + H]+ calcd for C8H8N3: 146.17; found: 146.16. The spectral data correspond to the reported values (see Ref. 10). N-Methylquinazolin-2-amine (5a) Prepared from (2-Formylphenyl)boronic acid (1) and N-methylguanidine hydrochloride (4a), and purified by column chromatography [silica gel, EtOAc–PE (20 to 50% gradient)] as a yellowish solid: yield: 134 mg (63%); mp 81–83 °C; Rf = 0.63 (EtOAc). 1H NMR (400 MHz, CDCl3): δ = 9.03 (s, 1 H), 7.72–7.56 (m, 3 H), 7.22 (t, J = 7.9 Hz, 1 H), 5.43 (br s, 1 H), 3.12 (d, J = 4.0 Hz, 3 H). 13C NMR (101 MHz, CDCl3): δ = 162.01, 160.50, 152.44, 134.37, 127.79, 125.83, 122.72, 120.75, 28.77. HRMS: m/z [M + H]+ calcd for C9H10N3: 160.0875; found: 160.0881. 6-(Benzyloxy)-N-methylquinazolin-2-amine (8b) Prepared from boronic acid 6b and N-methylguanidine hydrochloride (4a), and purified by column chromatography [silica gel, EtOAc–PE (20 to 60% gradient)] as a yellowish solid; yield: 150 mg (57%); mp 130–132 °C, Rf = 0.38 (50% EtOAc–PE). 1H NMR (400 MHz, CDCl3): δ = 8.88 (s, 1 H), 7.58 (d, J = 9.2 Hz, 1 H), 7.51–7.32 (m, 6 H), 7.05 (d, J = 2.8 Hz, 1 H), 5.23 (s, 1 H), 5.12 (s, 2 H), 3.10 (d, J = 5.1 Hz, 3 H). 13C NMR (101 MHz, CDCl3): δ = 160.67, 159.78, 154.12, 148.30, 136.70, 128.80, 128.28, 127.67, 127.23, 127.13, 120.32, 106.82, 70.55, 28.76. HRMS: m/z [M + H]+ calcd for C16H16N3O: 266.1293; found: 266.1292.
  • 27 Marcum JS, McGarry KA, Ferber CJ, Clark TB. J. Org. Chem. 2016; 81: 7963
  • 28 Vantourout JC, Law RP, Isidro-Llobet A, Atkinson SJ, Watson AJ. B. J. Org. Chem. 2016; 81: 3942