Synthesis 2020; 52(20): 3077-3085
DOI: 10.1055/s-0040-1707184
paper
© Georg Thieme Verlag Stuttgart · New York

Functional Group Interconversion of Alkylidenemalononitriles to Primary Alcohols by a Cooperative Redox Operation

Fabien Emmetiere
,
Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611-7200, USA   Email: [email protected]
› Author Affiliations
This material is based upon work supported by the National Science Foundation under Grant No. 1844443. We thank the College of Liberal Arts and Sciences and the Department of Chemistry at the University of Florida for start-up funds. We thank the Mass Spectrometry Research and Education Center and their funding source: NIH S10 OD021758-01A1.
Further Information

Publication History

Received: 11 May 2020

Accepted after revision: 09 June 2020

Publication Date:
21 July 2020 (online)


Abstract

Functional group interconversions are essential chemical processes enabling synthesis. In this report, we describe a strategy to convert alkylidenemalononitriles into primary alcohols in one step. The reaction relies on a choreographed redox process involving alkylidene reduction, malononitrile oxidation, and acylcyanide reduction where molecular oxygen and NaBH4 work cooperatively. The method was applied to a variety of carbon skeletons and was utilized to synthesize complex terpenoid architectures.

Supporting Information

 
  • References

  • 1 Freeman F. Chem. Rev. 1980; 80: 329
  • 2 Li XM, Wang B, Zhang JM, Yan M. Org. Lett. 2011; 13: 374
  • 3 Hu ZP, Lou CL, Wang JJ, Chen CX, Yan M. J. Org. Chem. 2011; 76: 3797
  • 4 Molleti N, Rana NK, Singh VK. Org. Lett. 2012; 14: 4322
  • 5 Jing L, Wei J, Zhou L, Huang Z, Li Z, Wu D, Xiang H, Zhou X. Chem. Eur. J. 2010; 16: 10955
  • 6 Tayyari F, Wood DE, Fanwick PE, Sammelson RE. Synthesis 2008; 279
  • 7 Sammelson RE, Allen MJ. Synthesis 2005; 543
  • 8 Förster S, Tverskoy O, Helmchen G. Synlett 2008; 2803
  • 9 Amundsen LH, Nelson LS. J. Am. Chem. Soc. 1951; 73: 242
  • 10 Haddenham D, Pasumansky L, DeSoto J, Eagon S, Singaram B. J. Org. Chem. 2009; 74: 1964
  • 11 Mattalia J.-MR. Beilstein J. Org. Chem. 2017; 13: 267
  • 12 Mattalia J.-M, Marchi-Delapierre C, Hazimeh H, Chanon M. ARKIVOC 2006; (iv): 90
  • 13 Rao JA, Ravichandran K, Malley GJ. O, Cava MP. Can. J. Chem. 1987; 65: 31
  • 14 Watt DS. J. Org. Chem. 1974; 39: 2799
  • 15 Freerksen RW, Selikson SJ, Wroble RR, Kyler KS, Watt DS. J. Org. Chem. 1983; 48: 4087
  • 16 DiBiase SA, Wolak RP, Dishong DM, Gokel GW. J. Org. Chem. 1980; 45: 3630
  • 17 Kulp SS, McGee MJ. J. Org. Chem. 1983; 48: 4097
  • 18 Selikson SJ. J. Org. Chem. 1975; 40: 267
  • 19 Li J, Lear MJ, Hayashi Y. Angew. Chem. Int. Ed. 2016; 55: 9060
  • 20 Hayashi Y, Li J, Asano H, Sakamoto D. Eur. J. Org. Chem. 2019; 675
  • 21 Lahtigui O, Emmetiere F, Zhang W, Jirmo L, Toledo-Roy S, Hershberger JC, Macho JM, Grenning AJ. Angew. Chem. Int. Ed. 2016; 55: 15792
  • 22 Ullrich V. Angew. Chem., Int. Ed. Engl. 1972; 11: 701
  • 23 Fréchet JM. J. Tetrahedron 1981; 37: 663
  • 24 Mimoun H. J. Mol. Catal. 1980; 7: 1
  • 25 Omura T, Sato R. J. Biol. Chem. 1964; 239: 2370
  • 26 Iwao T, Noboru K. J. Am. Chem. Soc. 1979; 101: 6456
  • 27 Klingenberg M. Arch. Biochem. Biophys. 1958; 75: 376
  • 28 Shimizu M, Orita H, Hayakawa T, Takehira K. J. Mol. Catal. 1988; 45: 85
  • 29 Shimizu M, Orita H, Hayakawa T, Takehira K. J. Mol. Catal. 1989; 53: 165
  • 30 Nishiki M, Satoh T, Sakurai H. J. Mol. Catal. 1990; 62: 79
  • 31 Perrée-Fauvet M, Gaudemer A. J. Chem. Soc., Chem. Commun. 1981; 874
  • 32 Takeuchi M, Kodera M, Kano K, Yoshida ZI. J. Mol. Catal. A: Chem. 1996; 113: 51
  • 33 Hill CL, Whitesides GM. J. Am. Chem. Soc. 1974; 96: 870
  • 34 Isayama S, Mukaiyama T. Chem. Lett. 1989; 569
  • 35 Isayama S, Mukaiyama T. Chem. Lett. 1989; 573
  • 36 Isayama S. Bull. Chem. Soc. Jpn. 1990; 63: 1305
  • 37 Inoki S, Kato K, Isayama S, Mukaiyama T. Chem. Lett. 1990; 1869
  • 38 Isayama S, Mukaiyama T. Chem. Lett. 1989; 1071
  • 39 Crossley SW. M, Obradors C, Martinez RM, Shenvi RA. Chem. Rev. 2016; 116: 8912
  • 40 Teichert JF, den Hartog T, Hanstein M, Smit C, ter Horst B, Hernandez-Olmos V, Feringa BL, Minnaard AJ. ACS Catal. 2011; 1: 309
  • 41 Ruider SA, Sandmeier T, Carreira EM. Angew. Chem. Int. Ed. 2015; 54: 2378
  • 42 Bosch C, Fiser B, Gómez-Bengoa E, Bradshaw B, Bonjoch J. Org. Lett. 2015; 17: 5084
  • 43 Iwasaki K, Wan KK, Oppedisano A, Crossley SW. M, Shenvi RA. J. Am. Chem. Soc. 2014; 136: 1300
  • 44 Lu HH, Pronin SV, Antonova-Koch Y, Meister S, Winzeler EA, Shenvi RA. J. Am. Chem. Soc. 2016; 138: 7268
  • 45 Lackner AD, Samant AV, Toste FD. J. Am. Chem. Soc. 2013; 135: 14090
  • 46 Andrez J.-C, Chowdhury S, Decker S, Dehnhardt CM, Focken T, Grimwood ME, Hemeon IW, Jia Q, Li J, Ortwine DF, Safina B, Sheng T, Sun S, Sutherlin DP, Wilson MS, Zenova AY. WO 2013177224 A1, 2013
  • 47 Zhang K, Chang L, An Q, Wang X, Zuo Z. J. Am. Chem. Soc. 2019; 141: 10556
  • 48 Scott SK, Grenning AJ. Angew. Chem. Int. Ed. 2017; 56: 8125
  • 49 Scott SK, Sanders JN, White KE, Yu RA, Houk KN, Grenning AJ. J. Am. Chem. Soc. 2018; 140: 16134
  • 50 Fereyduni E, Grenning AJ. Org. Lett. 2017; 19: 4130
  • 51 Fereyduni E, Sanders JN, Gonzalez G, Houk KN, Grenning AJ. Chem. Sci. 2018; 9: 8760
  • 52 Schroeder R, Grenning AJ. Tetrahedron 2019; 75: 3231
  • 53 Vertesaljai P, Serrano R, Mannchen MD, Williams M, Semenova E, Grenning AJ. Org. Lett. 2019; 21: 5704
  • 54 Ilardi EA, Stivala CE, Zakarian A. Chem. Soc. Rev. 2009; 38: 3133
  • 55 Jones AC, May JA, Sarpong R, Stoltz BM. Angew. Chem. Int. Ed. 2014; 53: 2556
  • 56 Cosgrove KL, McGeary RP. Tetrahedron 2010; 66: 3050
  • 57 Sun Z, Li Z, Liao WW. Green Chem. 2019; 21: 1614
  • 58 Manojveer S, Salahi S, Wendt OF, Johnson MT. J. Org. Chem. 2018; 83: 10864
  • 59 Chen Y, Leonardi M, Dingwall P, Labes R, Pasau P, Blakemore DC, Ley SV. J. Org. Chem. 2018; 83: 15558
  • 60 Taylor SK, Dickinson MG, May SA, Pickering DA, Sadek PC. Synthesis 1998; 1133
  • 61 Akhtar WM, Armstrong RJ, Frost JR, Stevenson NG, Donohoe TJ. J. Am. Chem. Soc. 2018; 140: 11916
  • 62 Dolente C, Schnider P. US 20110275801 A1, 2011
  • 63 Cueva JP, Gallardo-Godoy A, Juncosa JI, Vidi PA, Lill MA, Watts VJ, Nichols DE. J. Med. Chem. 2011; 54: 5508
  • 64 Li Z, Gupta MK, Snowden TS. Eur. J. Org. Chem. 2015; 7009
  • 65 Ingerl A, Justus K, Hellwig V, Steglich W. Tetrahedron 2007; 63: 6548
  • 66 van Greunen DG, Cordier W, Nell M, van der Westhuyzen C, Steenkamp V, Panayides JL, Riley DL. Eur. J. Med. Chem. 2017; 127: 671