Synthesis 2021; 53(04): 754-764
DOI: 10.1055/s-0040-1707323
paper

Utilization of Borane-Catalyzed Hydrosilylation as a Dearomatizing Tool: Six-Membered Cyclic Amidine Synthesis from Isoquinolines and Pyridines

Vinh Do Cao
,
Dong Geun Jo
,
Huiae Kim
,
Changeun Kim
,
Seula Yun
,
Seewon Joung
This research was supported by the National Research Foundation of Korea (NRF-2018R1D1A1B07045397) and Korea Basic Science Institute (KBSI) National Research Facilities & Equipment Center (NFEC) grant funded by the Korea government (Ministry of Education) (no. 2019R1A6C1010005). This work was carried out by the convergence Research Laboratory established by the Mokpo National University (MNU) Innovation Support Project.


Abstract

In this study, a convenient strategy to synthesize six-membered­ cyclic amidines from isoquinolines and pyridines has been developed. Borane-catalyzed hydrosilylation of each N-heteroarene was utilized as a dearomatizing tool. Substrate scope is broad with respect to both isoquinolines and pyridines, with various reaction pathways depending on the substitution pattern of the N-heteroarenes. The reaction mechanism and reactivity of each class of N-heteroarenes has been discussed. The resulting six-membered (Z)-sulfonyl amidine products are rarely reported and are mostly unprecedented. The scalability of this method and versatility of the cyclic amidine products are also presented.

Supporting Information



Publication History

Received: 18 August 2020

Accepted after revision: 09 September 2020

Article published online:
12 October 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Becquart C, Le Roch M, Azoulay S, Uriac P, Di Giorgio A, Duca M. ACS Omega 2018; 3: 16500
    • 1b Rasmussen CR, Gardocki JF, Plampin JN, Twardzik BL, Reynolds BE, Molinari AJ, Schwartz N, Bennetts WW, Price BE, Marakowski J. J. Med. Chem. 1978; 21: 1044
    • 1c Jaroch S, Hölscher P, Rehwinkel H, Sülzle D, Burton G, Hillmann M, McDonald FM. Bioorg. Med. Chem. Lett. 2002; 12: 2561
    • 1d Diana GD, Hinshaw WB, Lape HE. J. Med. Chem. 1977; 20: 449
    • 1e Calas M, Ouattara M, Piquet G, Ziora Z, Bordat Y, Ancelin ML, Escale R, Vial H. J. Med. Chem. 2007; 50: 6307
    • 1f Penning TD, Khilevich A, Chen BB, Russell MA, Boys ML, Wang Y, Duffin T, Engleman VW, Finn MB, Freeman SK, Hanneke ML, Keene JL, Klover JA, Nickols GA, Nickols MA, Rader RK, Settle SL, Shannon KE, Steininger CN, Westlin MM, Westlin WF. Bioorg. Med. Chem. Lett. 2006; 16: 3156
    • 1g Blériot Y, Dintinger T, Genre-Grandpierre A, Padrines M, Tellier C. Bioorg. Med. Chem. Lett. 1995; 5: 2655
    • 1h Christoff JJ, Bradley L, Miller DD, Lei L, Rodriguez F, Fraundorfer P, Romstedt K, Shams G, Feller DR. J. Med. Chem. 1997; 40: 85
    • 1i Webber RK, Metz S, Moore WM, Connor JR, Currie MG, Fok KF, Hagen TJ, Hansen DW, Jerome GM, Manning PT, Pitzele BS, Toth MV, Trivedi M, Zupec ME, Tjoeng FS. J. Med. Chem. 1998; 41: 96
    • 2a Guthikonda RN, Shah SK, Pacholok SG, Humes JL, Mumford RA, Grant SK, Chabin RM, Green BG, Tsou N, Ball R, Fletcher DS, Luell S, MacIntyre DE, MacCoss M. Bioorg. Med. Chem. Lett. 2005; 15: 1997
    • 2b Delcros J.-G, Tomasi S, Duhieu S, Foucault M, Martin B, Le Roch M, Eifler-Lima V, Renault J, Uriac P. J. Med. Chem. 2006; 49: 232
    • 2c Lee E, Han S, Jin GH, Lee HJ, Kim W.-Y, Ryu J.-H, Jeon R. Bioorg. Med. Chem. Lett. 2013; 23: 3976
    • 2d Glushkov VA, Anikina LV, Vikharev YB, Feshina EV, Shklyaev YV. Pharm. Chem. J. 2005; 39: 533
    • 2e Al-Khawaja A, Petersen JG, Damgaard M, Jensen MH, Vogensen SB, Lie ME. K, Kragholm B, Bräuner-Osborne H, Clausen RP, Frølund B, Wellendorph P. Neurochem. Res. 2014; 39: 1988
    • 2f Schweinitz A, Dönnecke D, Ludwig A, Steinmetzer P, Schulze A, Kotthaus J, Wein S, Clement B, Steinmetzer T. Bioorg. Med. Chem. Lett. 2009; 19: 1960
    • 3a Chen J, Long W, Yang Y, Wan X. Org. Lett. 2018; 20: 2663
    • 3b Tsuritani T, Yamamoto Y, Kawasaki M, Mase T. Org. Lett. 2009; 11: 1043
    • 3c Chang S, Lee M, Jung DY, Yoo EJ, Cho SH, Han SK. J. Am. Chem. Soc. 2006; 128: 12366
    • 3d Golovko TV, Solov’eva NP, Anisimova OS, Granik VG. Chem. Heterocycl. Compd. 2003; 39: 344
    • 3e Xu Y, Zhu S. Tetrahedron 2001; 57: 4337
  • 4 Cao VD, Mun SH, Kim SH, Kim GU, Kim HG, Joung S. Org. Lett. 2020; 22: 515
    • 5a Gandhamsetty N, Joung S, Park S.-W, Park S, Chang S. J. Am. Chem. Soc. 2014; 136: 16780
    • 5b Gandhamsetty N, Park S, Chang S. J. Am. Chem. Soc. 2015; 137: 15176
    • 5c Park S, Chang S. Angew. Chem. Int. Ed. 2017; 56: 7720
  • 6 Bakulev VA, Beryozkina T, Thomas J, Dehaen W. Eur. J. Org. Chem. 2018; 262
  • 7 Xu Y, Wang Y, Zhu S, Zhu G, Jia Y, Huang Q. J. Fluorine Chem. 2000; 106: 133
  • 8 See the Supporting Information for details.
  • 9 Curless LD, Ingleson MJ. Organometallics 2014; 33: 7241
  • 10 Gandhamsetty N, Park S, Chang S. Synlett 2017; 28: 2396
  • 11 See the Supporting Information for details.
  • 12 We observed double hydrosilylation as well as [3+2] cycloaddition of the 2-methylenamine.
  • 13 See the Supporting Information for a detailed mechanism describing the stereoselectivity.
  • 14 CCDC 1987424 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
    • 15a Rendler S, Oestreich M. Angew. Chem. Int. Ed. 2008; 47: 5997
    • 15b Sakata K, Fujimoto H. J. Org. Chem. 2013; 78: 12505
  • 16 Similar hydrolysis of the cyclic amidine product from quinoline was also described in the Supporting Information.
    • 17a Mortelmans C, Van Binst G. Tetrahedron 1978; 34: 363
    • 17b Wang J.-J, Hu W.-P. J. Org. Chem. 1999; 64: 5725
    • 17c Scott JD, Miller MW, Li SW, Lin S.-I, Vaccaro HA, Hong L, Mullins DE, Guzzi M, Weinstein J, Hodgson RA, Varty GB, Stamford AW, Chan T.-Y, McKittrick BA, Greenlee WJ, Priestley T, Parker EM. Bioorg. Med. Chem. Lett. 2009; 19: 6018
    • 17d Akkarasamiyo S, Sawadjoon S, Orthaber A, Samec JS. M. Chem. Eur. J. 2018; 24: 3488