Synthesis 2020; 52(15): 2259-2266
DOI: 10.1055/s-0040-1707525
paper
© Georg Thieme Verlag Stuttgart · New York

Facile One-Pot Access to α-Diazo-β-ketosulfones from Sulfonyl Chlorides and α-Haloketones

Dmitry Dar’in
a   Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
,
Grigory Kantin
a   Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
,
Olga Bakulina
a   Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
,
a   Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
b   Laboratory of Chemical Pharmacology, Institute of Chemistry, Saint Petersburg State University, 26 Universitetskyi prospekt, Peterhof 198504, Russian Federation   Email: m.krasavin@spbu.ru
› Author Affiliations
This work was supported by the Russian Foundation for Basic Research (project grant 19-03-00775).
Further Information

Publication History

Received: 01 March 2020

Accepted after revision: 01 April 2020

Publication Date:
28 April 2020 (online)


Abstract

A convenient one-pot approach to the preparation of α-diazo-β-ketosulfones from sulfonyl chlorides is described. It involves the conversion of the sulfonyl chloride to sodium sulfinate, alkylation of the latter with α-haloketones followed by diazo transfer using the ‘sulfonyl-azide-free’ (‘SAFE’) protocol in aqueous medium. The simple and expedient method relies on readily available starting materials and provides facile access to a wide variety of valuable diazo reagents for organic synthesis.

Supporting Information

 
  • References


    • For recent reviews on diazo chemistry, see:
    • 1a Ford A, Miel H, Ring A, Slattery CN, Maguire AR, McKervey MA. Chem. Rev. 2015; 115: 9981
    • 1b Santiago JV, Machado AH. L. Beilstein J. Org. Chem. 2016; 12: 882
    • 1c Pena-Lopez M, Beller M. Angew. Chem. Int. Ed. 2017; 56: 46
    • 1d Liu L, Zhang J. Chem. Soc. Rev. 2016; 45: 506
    • 1e Ciszewski LW, Rybicka-Jasińska K, Gryko D. Org. Biomol. Chem. 2019; 17: 432
    • 1f Guttenberger N, Breinbauer R. Tetrahedron 2017; 73: 6815
    • 1g Zhao X, Zhang Y, Wang J. Chem. Commun. 2012; 48: 10162
    • 1h Davies HM. L, Morton D. Chem. Soc. Rev. 2011; 40: 1857
  • 2 Liu W, Fang L, Wan Y, Zhang J, Deng G, Wang J. Tetrahedron 2019; 75: 855
    • 3a Chen X, Hu X, Bai S, Deng Y, Jiang H, Zeng W. Org. Lett. 2016; 18: 192
    • 3b Brouder TA, Slattery CN, Ford A, Rao Khandavilli UB, Skořepova E, Eccles KS, Lusi M, Lawrence CE, Maguire AR. J. Org. Chem. 2019; 84: 7543
    • 3c Cui X, Xu X, Jin L.-M, Wojtasa L, Zhang XP. Chem. Sci. 2015; 6: 1219
    • 5a Huang Z, Wang C, Tokunaga E, Sumii Y, Shibata N. Org. Lett. 2015; 17: 5610
    • 5b Huang Z, Jia S, Wang C, Tokunaga E, Sumii Y, Shibata N. J. Fluorine Chem. 2017; 198: 61
    • 5c Safrygin A, Dar’in D, Kantin G, Krasavin M. Eur. J. Org. Chem. 2019; 4721
    • 6a Pal A, Koduri ND, Wang Z, Lopez Quiroz E, Chong A, Vuong M, Rajagopal N, Nguyen M, Roberts KP, Hussaini SR. Tetrahedron Lett. 2017; 58: 586
    • 6b Kong L, Han X, Li X. Chem. Commun. 2019; 55: 7339
    • 6c Nagode SB, Kant R, Rastogi N. Org. Lett. 2019; 21: 6249
    • 6d Pang W, Zhu S, Xing C, Luo N, Jianga H, Zhu S. J. Fluorine Chem. 2008; 129: 343
    • 6e Huang J, Hu X, Chen F, Gui J, Zeng W. Org. Biomol. Chem. 2019; 17: 7042
    • 6f Adly FG, Marichev KO, Jensen JA, Arman H, Doyle MP. Org. Lett. 2019; 21: 40
    • 7a Kumar R, Namboothiri IN. N. Org. Lett. 2011; 13: 4016
    • 7b Kumar R, Verma D, Mobin SM, Namboothiri IN. N. Org. Lett. 2012; 14: 4070
    • 7c Kumar R, Nair D, Namboothiri IN. N. Tetrahedron 2014; 70: 1794
    • 7d Ahamad S, Kumar Patidar R, Kumar A, Kant R, Mohanan K. ChemistrySelect 2017; 2: 11995
    • 7e Das P, Gondo S, Tokunaga E, Sumii Y, Shibata N. Org. Lett. 2018; 20: 558
    • 7f Nair D, Pavashe P, Namboothiri IN. N. Tetrahedron 2018; 74: 2716
    • 8a Qi X, Daia L, Park C.-M. Chem. Commun. 2012; 48: 11244
    • 8b Shi Z, Koester DC, Boultadakis-Arapinis M, Glorius F. J. Am. Chem. Soc. 2013; 135: 12204
    • 8c Bel Abed H, Mammoliti O, Bande O, Van Lommen G, Herdewijn P. Org. Biomol. Chem. 2014; 12: 7159
    • 8d Shi L, Yua K, Wang B. Chem. Commun. 2015; 51: 17277
    • 9a Shi B, Blake AJ, Campbell IB, Judkins BD, Moody CJ. Chem. Commun. 2009; 45: 3291
    • 9b Cui X, Xu X, Wojtas L, Kim MM, Zhang XP. J. Am. Chem. Soc. 2012; 134: 19981
    • 9c Chen X, Xie Y, Xiao X, Li G, Deng Y, Jiang H, Zeng W. Chem. Commun. 2015; 51: 15328
    • 9d Jiang H, Gao S, Xu J, Wu X, Lin A, Yao H. Adv. Synth. Catal. 2016; 358: 188
    • 9e Davis OA, Croft RA, Bull JA. J. Org. Chem. 2016; 81: 11477
    • 9f Søholm Halskov K, Roth HS, Ellman JA. Angew. Chem. Int. Ed. 2017; 56: 9183
    • 9g Shen B, Wan B, Li X. Angew. Chem. Int. Ed. 2018; 57: 15534
    • 9h Ahamad S, Kumar A, Kant R, Mohanan K. Asian J. Org. Chem. 2018; 7: 1698
    • 9i Zhang J, Deng G, Wang J. Eur. J. Org. Chem. 2019; 3979
    • 10a Zhu S, Ruppel JV, Lu H, Wojtas L, Zhang XP. J. Am. Chem. Soc. 2008; 130: 5042
    • 10b Hodgson DM, Glen R, Redgrave AJ. Tetrahedron: Asymmetry 2009; 20: 754
    • 10c Flynn CJ, Elcoate CJ, Lawrence CE, Maguire AR. J. Am. Chem. Soc. 2010; 132: 1184
    • 10d Slattery CN, Clarke L.-A, O’Neill S, Ring A, Ford A, Maguire AR. Synlett 2012; 23: 765
    • 10e Sawada T, Nakada M. Tetrahedron: Asymmetry 2012; 23: 350
    • 10f Shiely AE, Slattery CN, Ford A, Eccles KS, Lawrence CE, Maguire AR. Org. Biomol. Chem. 2017; 15: 2609
    • 10g Brauns M, Cramer N. Angew. Chem. Int. Ed. 2019; 58: 8902
  • 11 Honma M, Nakada M. Tetrahedron Lett. 2007; 48: 1541
  • 12 Qiu Y, Zhong J, Du S, Gao S. Chem. Commun. 2018; 54: 5554
    • 14a Vrijland MS. A. Org. Synth. 1977; 57: 88
    • 14b Fu Y, Xu Q.-S, Li Q.-Z, Du Z, Wang K.-H, Huang D, Hu Y. Org. Biomol. Chem. 2017; 15: 2841
    • 14c Srinivas K, Dubey PK. Synth. Commun. 2011; 41: 1584
  • 15 Bretherick’s Handbook of Reactive Chemical Hazards, 6th ed. Urben PG. Butterworth-Heinemann; Oxford: 1999
  • 16 Ferdinand G, Jeblick W, Schank K. Liebigs Ann. Chem. 1976; 1713
  • 17 Hodson D, Holt G, Wall DK. J. Chem. Soc. C 1968; 2201