Synthesis 2020; 52(12): 1773-1778
DOI: 10.1055/s-0040-1707989
paper
© Georg Thieme Verlag Stuttgart · New York

A Convenient Synthesis of Amidines via Cycloaddition–Decarboxylation of Isocyanates and Nitrones

Yijing Wu
,
Xinyi Chen
,
Mei-Mei Zhang
School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. of China   Email: mmzhangwtt@163.com
› Author Affiliations
This work was financially supported by the talent plan of Jiangsu Normal University (16XLR013).
Further Information

Publication History

Received: 07 January 2020

Accepted after revision: 17 February 2020

Publication Date:
09 March 2020 (online)


Abstract

A base-promoted reaction between isocyanates and nitrones has been described, allowing an access to a variety of important functionalized amidines under mild reaction conditions. This strategy provides a convenient, effective, and scalable approach for the direct assembly of amidine compounds from simple starting materials in excellent yields.

Supporting Information

 
  • References

  • 1 Guo W, Zhao M, Tan W, Zheng L, Tao K, Fan X. Org. Chem. Front. 2019; 6: 2120
  • 2 Rauws TR. M, Maes BU. W. Chem. Soc. Rev. 2012; 41: 2463
  • 3 Quek JY, Davis TP, Lowe AB. Chem. Soc. Rev. 2013; 42: 7326
  • 4 Aly AA, Bräse S, Gomaa MA.-M. ARKIVOC 2018; (vi): 85
    • 6a Khalifa MM, Bodner MJ, Berglund JA, Haley MM. Tetrahedron Lett. 2015; 56: 4109
    • 6b Wang J, Xu F, Shen Q. Org. Lett. 2008; 10: 445
    • 7a Das VK, Thakur AJ. Tetrahedron Lett. 2013; 54: 4164
    • 7b Obenauf J, Kretschmer W, Bauer T, Kempe R. Eur. J. Inorg. Chem. 2013; 537
    • 7c Stippich K, Kretschmer R, Beckert R, Goerls H. Synthesis 2010; 1311
    • 7d Ursini A, Delpogetto M, Guercio G, Perboni A, Rossi T. Synlett 2001; 388
  • 8 Zhang W.-X, Nishiura M, Hou Z. Chem. Eur. J. 2007; 13: 4037
    • 10a Liu B, Ning Y, Virelli M, Zanoni G, Anderson EA, Bi X. J. Am. Chem. Soc. 2019; 141: 1593
    • 10b Zhang Z, Huang B, Qiao G, Zhu L, Xiao F, Chen F, Fu B, Zhang Z. Angew. Chem. Int. Ed. 2017; 56: 4320
    • 10c Kim J, Stahl SS. J. Org. Chem. 2015; 80: 2448
    • 10d Schwarz L, Girreser U, Ciement B. Eur. J. Org. Chem. 2014; 1961
    • 10e Chen S, Xu Y, Wan X. Org. Lett. 2011; 13: 6152
    • 10f Bae I, Han H, Chang S. J. Am. Chem. Soc. 2005; 127: 2038
    • 11a Chiacchio MA, Legnani L, Campisi A, Paola B, Giuseppe L, Iannazzo D, Veltri L, Giofrè S, Romeo R. Org. Biomol. Chem. 2019; 17: 4892
    • 11b Ritter T, Carreira EM. Angew. Chem. Int. Ed. 2005; 44: 936
    • 11c Bell AM. T, Bridges J, Cross R, Falshaw CP, Taylor BF, Taylor GA, Whittaker IC, Begley MJ. J. Chem. Soc., Perkin Trans. 1 1987; 2593
    • 11d Ashburn SP, Coates RM. J. Org. Chem. 1985; 50: 3076
    • 11e Evans AR, Hafiz M, Taylor GA. J. Chem. Soc., Perkin Trans. 1 1984; 1241
    • 11f Damavandy JA, Jones RA. Y. J. Chem. Soc., Perkin Trans. 1 1981; 712
    • 11g Safir SR, Lopresti RJ. J. Am. Chem. Soc. 1958; 80: 4921
  • 12 Mo D.-L, Pecak WH, Zhao M, Wink DJ, Anderson LL. Org. Lett. 2014; 16: 3696
  • 13 Lin J.-P, Zhang F.-H, Long Y.-Q. Org. Lett. 2014; 16: 2822
    • 14a Li P, Ma N, Wang Z, Dai Q, Hu C. J. Org. Chem. 2018; 83: 8233
    • 14b Liu K, Teng H.-L, Wang C.-J. Org. Lett. 2014; 16: 4508