Synthesis 2022; 54(07): 1775-1784
DOI: 10.1055/s-0040-1719841
paper

Facile Synthesis of Quaternary α-Fluoronitriles by Cobalt-Catalyzed Hydrocyanation of Monofluoroalkenes

Yanlin Li
,
Ru Cui
,
Tian-Rui Wu
,
Xi-Sheng Wang
We gratefully acknowledge the National Science Foundation of China (21971228, 21772187) for financial support.


Abstract

An exclusively regioselective hydrocyanation of monofluoroalkenes has been developed, with which a series of aliphatic quaternary α-fluoronitriles were synthesized in a facile and efficient manner. This novel method is featured with mild conditions, good functional groups compatibilities, and high reactivity.

Supporting Information



Publication History

Received: 16 August 2021

Accepted after revision: 07 September 2021

Article published online:
21 October 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Chen P, Liu G. Eur. J. Org. Chem. 2015; 4295
    • 2a Purser S, Moore RP, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 2b Ni C, Hu J. Chem. Soc. Rev. 2016; 45: 5441
    • 2c Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Aceña JL, Soloshonok VA, Izawa K, Liu H. Chem. Rev. 2016; 116: 422
    • 2d Zhu Y, Wang J, Shibata N, Sodeoka M, Soloshonok VA, Coelho JA. S, Toste FD. Chem. Rev. 2018; 118: 3887
    • 2e Jeschke P. ChemBioChem 2004; 5: 570
    • 3a Murray TK, Whalley K, Robinson CS, Ward MA, Hicks CA, Caroline A, Lodge D, Vandergriff JL, Baumbarger P, Siuda E, Gates M, Ogden AM. J. Pharmacol. Exp. Ther. 2003; 306: 752
    • 3b Cox CD, Coleman PJ, Breslin MJ, Whitman DB, Garbaccio RM, Fraley ME, Buser CA, Walsh ES, Hamilton K, Schaber MD, Lobell RB, Tao W, Davide JP, Diehl RE, Abrams MT, South VJ, Huber HE, Torrent M, Prueksaritanont T, Li C, Slaughter DE, Mahan E, Fernandez-Metzler C, Yan Y, Kuo LC, Kohl NE, Hartman GD. J. Med. Chem. 2008; 51: 4239
    • 3c Qiu J, Silverman RB. J. Med. Chem. 2000; 43: 706
    • 3d Reichman U, Watanabe KA, Fox JJ. Carbohydr. Res. 1975; 42: 233
    • 3e Asahina Y, Takei M, Kimura T, Fukuda Y. J. Med. Chem. 2008; 51: 3238
  • 4 Shewalkara MP, Reddya BV. B, Shinde DB. Lett. Org. Chem. 2015; 12: 222
    • 5a Shibata N, Suzuki E, Asahi T, Shiro M. J. Am. Chem. Soc. 2001; 123: 7001
    • 5b Park EJ, Kim HR, Joung CU, Kim DY. Bull. Korean Chem. Soc. 2004; 25: 1451
    • 5c Kim HR, Kim DY. Tetrahedron Lett. 2005; 46: 3115
    • 5d Moriya K, Hamashima Y, Sodeoka M. Synlett 2007; 1139
    • 5e Kim SM, Kang YK, Cho MJ, Mang JY, Kim DY. Bull. Korean Chem. Soc. 2007; 28: 2435
    • 5f Kang YK, Cho MJ, Kim SM, Kim DY. Synlett 2007; 1135
    • 5g Kwon BK, Mang JY, Kim DY. Bull. Korean Chem. Soc. 2012; 33: 2481
    • 6a Balaji PV, Brewitz L, Kumagai N, Shibasaki M. Angew. Chem. Int. Ed. 2019; 58: 2644
    • 6b Ding R, De los Santos ZA, Wolf C. ACS Catal. 2019; 9: 2169
    • 6c Balaji PV, Li Z, Saito A, Kumagai N, Shibasaki M. Chem. Eur. J. 2020; 26: 15524
    • 6d Chen D.-Y, Song S, Chen L.-Y, Ren X, Li Y. Tetrahedron Lett. 2021; 68: 152919
    • 7a Su Y.-S, Feng G.-S, Wang Z.-Y, Lan Q, Wang X.-S. Angew. Chem. Int. Ed. 2015; 54: 6003
    • 7b Li G, Wang T, Fei F, Su Y.-M, Li Y, Lan Q, Wang X.-S. Angew. Chem. Int. Ed. 2016; 55: 3491
    • 7c Li C, Cao Y.-X, Wang R, Wang Y.-N, Lan Q, Wang X.-S. Nat. Commun. 2018; 9: 4951
    • 7d Sheng J, Ni H.-Q, Zhang H.-R, Zhang K.-F, Wang Y.-N, Wang X.-S. Angew. Chem. Int. Ed. 2018; 57: 7634
    • 7e Li C, Cao Y.-X, Jin R.-X, Bian K.-J, Qin Z.-Y, Lan Q, Wang X.-S. Chem. Sci. 2019; 10: 9285
    • 7f Zhang K.-F, Bian K.-J, Li C, Sheng J, Li Y, Wang X.-S. Angew. Chem. Int. Ed. 2019; 58: 5069
  • 8 Liu J, Yuan Q, Toste FD, Sigman MS. Nat. Chem. 2019; 11: 710
    • 9a Crossley SW. M, Obradors C, Martinez RM, Shenvi RA. Chem. Rev. 2016; 116: 8912
    • 9b Gaspar B, Carreira EM. J. Am. Chem. Soc. 2009; 131: 13214
    • 9c Gaspar B, Carreira EM. Angew. Chem. Int. Ed. 2007; 46: 4519
    • 9d Ma X, Herzon SB. J. Am. Chem. Soc. 2016; 138: 8718
    • 9e Lo JC, Gui J, Yabe Y, Pan C.-M, Baran PS. Nature 2014; 516: 343
    • 9f Green SA, Matos JL. M, Yagi A, Shenvi RA. J. Am. Chem. Soc. 2016; 138: 12779
    • 9g Shevick SL, Obradors C, Shenvi RA. J. Am. Chem. Soc. 2018; 140: 12056
    • 9h Green SA, Huffman TR, McCourt RO, van der Puyl V, Shenvi RA. J. Am. Chem. Soc. 2019; 141: 7709
    • 9i Green SA, Vásquez-Céspedes S, Shenvi RA. J. Am. Chem. Soc. 2018; 140: 11317
    • 9j Zhang B, He J, Li Y, Song T, Fang Y, Li C. J. Am. Chem. Soc. 2021; 143: 4955
    • 9k Tokuyasu T, Kunikawa S, Masuyama A, Nojima M. Org. Lett. 2002; 4: 3595
    • 9l Waser J, Nambu H, Carreira EM. J. Am. Chem. Soc. 2005; 127: 8294
  • 10 Tkachenko AN, Radchenko DS, Mykhailiuk PK, Grygorenko OO, Komaro IV. Org. Lett. 2009; 11: 5674
  • 11 Thomson CJ, Zhang Q, Al-Maharik N, Bühl M, Cordes DB, Slawin AM. Z, O’Hagan D. Chem. Commun. 2018; 54: 8415