Synlett 2022; 33(04): 367-370
DOI: 10.1055/s-0041-1737759
letter

Dirhodium(II)-Catalyzed Synthesis of N-(Arylsulfonyl)hydrazines by N–H Amination of Aliphatic Amines

Motoki Ito
,
Yui Hasegawa
,
Satomi Saito
,
Asami Onda
,
Kazuhiro Higuchi
,
Shigeo Sugiyama
This work is financially supported by a Grant-in-Aid for Scientific Research (C) from the Japan Society for the Promotion of Science (JSPS, 21K05077).


Abstract

This study reports the development of Rh(II)-catalyzed N–N bond-forming reaction of amino acid derivatives or aliphatic amines to provide hydrazine derivatives through the combined use of Rh2(esp)2 and [(3,4-dimethoxyphenyl)sulfonylimino]-2,4,6-trimethylphenyliodinane (3,4-(MeO)2C6H3SO2N=IMes). This is the first report of N–H amination of aliphatic amines with metal–nitrene species.

Supporting Information



Publication History

Received: 07 December 2021

Accepted after revision: 20 December 2021

Article published online:
13 January 2022

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Blair LM, Sperry J. J. Nat. Prod. 2013; 76: 794
    • 1b Oelke AJ, France DJ, Hofmann T, Wuitschik G, Ley SV. Nat. Prod. Rep. 2011; 28: 1445
    • 1c Dean C, Rajkumar S, Roesner S, Carson N, Clarkson GJ, Wills M, Jones M, Shipman M. Chem. Sci. 2020; 11: 1636
    • 2a Kang CW, Sarnowski MP, Elbatrawi YM, Del Valle JR. J. Org. Chem. 2017; 82: 1833
    • 2b Rathman BM, Allen JL, Shaw LN, Del Valle JR. Bioorg. Med. Chem. Lett. 2020; 30: 127283
    • 4a Vidal J, Hannachi J.-C, Hourdin G, Mulatier J.-C, Collet A. Tetrahedron Lett. 1998; 39: 8845
    • 4b Armstrong A, Jones LH, Knight JD, Kelsey RD. Org. Lett. 2005; 7: 713
    • 5a Rosen BR, Werner EW, O’Brien AG, Baran PS. J. Am. Chem. Soc. 2014; 136: 5571
    • 5b Ryan MC, Martinelli JR, Stahl SS. J. Am. Chem. Soc. 2018; 140: 9074
    • 5c Yin D, Jin J. Eur. J. Org. Chem. 2019; 5646
    • 5d Vemuri PY, Patureau FW. Org. Lett. 2021; 23: 3902

      Reviews, see:
    • 6a Müller P, Fruit C. Chem. Rev. 2003; 103: 2905
    • 6b Roizen JL, Harvey ME, Du Bois J. Acc. Chem. Res. 2012; 45: 911
    • 6c Buendia J, Grelier G, Dauban P. Adv. Organomet. Chem. 2015; 64: 77
    • 6d Darses B, Rodrigues R, Neuville L, Mazurais M, Dauban P. Chem. Commun. 2017; 53: 493
    • 6e Hayashi H, Uchida T. Eur. J. Org. Chem. 2020; 909
    • 6f Vine LE, Zerull EE, Schomaker JM. Synlett 2021; 32: 30
    • 6g Rodríguez MR, Díaz-Requejo MM, Pérez PJ. Synlett 2021; 32: 763
    • 6h Wang Y.-C, Lai X.-J, Huang K, Yadav S, Qiu G, Zhang L, Zhou H. Org. Chem. Front. 2021; 8: 1677
    • 7a Jain SL, Sharma VB, Sain B. Tetrahedron Lett. 2003; 44: 4385
    • 7b Li J, Cisar JS, Zhou C.-Y, Vera B, Williams H, Rodríguez AD, Cravatt BF, Romo D. Nat. Chem. 2013; 5: 510
    • 7c Maestre L, Dorel R, Pablo Ó, Escofet I, Sameera WM. C, Álvarez E, Maseras F, Díaz-Requejo MM, Echavarren AM, Pérez PJ. J. Am. Chem. Soc. 2017; 139: 2216

      It is reported that aminimides formed through the reactions of bicyclic aminals or (sulfon)amides and Rh(II)–nitrene underwent rearrangement to form formal C–N or S–N bond insertion products:
    • 8a Pujari SA, Guénée L, Lacour J. Org. Lett. 2013; 15: 3930
    • 8b Kono M, Harada S, Nemoto T. Chem. Eur. J. 2019; 25: 3119

      We previously reported ortho C–H amination of tertiary aromatic amines with Rh(II)–nitrene and presumed that the regioselectivity was due to the interaction between amino group and nitrogen atom of Rh(II)-nitrene:
    • 9a Ito M, Nakagawa T, Higuchi K, Sugiyama S. Org. Biomol. Chem. 2018; 16: 6876
    • 9b Ito M, Mori M, Nakagawa T, Hori M, Higuchi K, Sugiyama S. Heterocycles 2021; 103: 403
  • 10 Wang H, Jung H, Song F, Zhu S, Bai Z, Chen D, He G, Chang S, Chen G. Nat. Chem. 2021; 13: 378
    • 11a Yang M, Wang X, Li H, Livant P. J. Org. Chem. 2001; 66: 6729
    • 11b Li M.-L, Yu J.-H, Li Y.-H, Zhu S.-F, Zhou Q.-L. Science 2019; 366: 990
    • 11c Shinohara H, Saito H, Homma H, Mizuta K, Miyairi S, Uchiyama T. Tetrahedron 2020; 76: 131619
    • 12a Ito M, Tanaka A, Higuchi K, Sugiyama S. Eur. J. Org. Chem. 2017; 1272

    • An example of hydrazine formation from N-allylaniline is also reported in this study:
    • 12b Ito M, Tanaka A, Hatakeyama K, Kano E, Higuchi K, Sugiyama S. Org. Chem. Front. 2020; 7: 64
  • 13 N-Benzyl-1-aminocyclopropanecarboxylate provided a similar result to 1a. We choose 1a as the substrate because purification of the N–H amination product 3ad was easier than that obtained from the N-benzyl substrate.
  • 14 In our previous work, the reaction at higher concentration (0.1 M) led to the formation of azo compounds by dimerization of primary aromatic amines, see ref. 12a.
  • 15 Typical Experimental Procedure 3,4-(MeO)2C6H3SO2N=IMes (5d, 554 mg, 1.20 mmol) was added to a stirred mixture of 1a (233 mg, 1.00 mmol), Rh2(esp)2 (15.2 mg, 2.00·10–2 mmol, 2 mol%), and MS 4 Å (powder, 400 mg) in CF3C6H5 (40 mL) at 0 °C under Ar atmosphere. After stirring at room temperature for 1 h, the whole mixture was filtered through a pad of Celite, and the filtrate was concentrated in vacuo to furnish the crude product, which was purified by column chromatography (silica gel, 1:1 n-hexane/AcOEt) to give 3ad (364 mg, 81%) as orange oil. IR (KBr): ν = 3279, 2933, 1722, 1511, 1165, 1029 cm–1. 1H NMR (400 MHz, CD3CN, 60 °C): δ = 0.90 (br d, 2 H, c-propane), 1.05 (t, J = 7.2 Hz, 3 H, CH2CH 3), 1.25 (br s, 2 H, c-propane), 2.21 (s, 3 H, ArCH3), 3.66 (s, 3 H, OCH3), 3.69 (s, 3 H, OCH3), 3.90 (q, J = 7.2 Hz, 2 H, CH 2CH3), 4.41 (s, 2 H, ArCH2), 6.60 (dd, J = 8.4, 2.6 Hz, 1 H, ArH), 6.62 (d, J = 2.6 Hz, 1 H, ArH), 6.77 (d, J = 8.4 Hz, 1 H, ArH), 7.02 (d, J = 8.0 Hz, 2 H, ArH), 7.09–7.11 (m, 3 H, NH and ArH). 13C NMR (100 MHz, CD3CN, 60 °C): δ = 14.6 (CH3), 20.1 (CH2), 21.3 (CH3), 43.6 (C), 54.8 (CH2), 56.9 (CH3), 57.2 (CH3), 62.5 (CH2), 109.9 (CH), 113.9 (CH), 116.8 (CH), 130.1 (CH), 130.5 (CH) 131.9 (C), 135.2 (C), 138.8 (C), 148.8 (C), 151.0 (C), 174.0 (C=O). HRMS (EI): m/z calcd for C22H28N2O6S [M]+: 448.1668; found: 448.1666.