Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2022; 33(04): 367-370
DOI: 10.1055/s-0041-1737759
DOI: 10.1055/s-0041-1737759
letter
Dirhodium(II)-Catalyzed Synthesis of N-(Arylsulfonyl)hydrazines by N–H Amination of Aliphatic Amines
This work is financially supported by a Grant-in-Aid for Scientific Research (C) from the Japan Society for the Promotion of Science (JSPS, 21K05077).
Abstract
This study reports the development of Rh(II)-catalyzed N–N bond-forming reaction of amino acid derivatives or aliphatic amines to provide hydrazine derivatives through the combined use of Rh2(esp)2 and [(3,4-dimethoxyphenyl)sulfonylimino]-2,4,6-trimethylphenyliodinane (3,4-(MeO)2C6H3SO2N=IMes). This is the first report of N–H amination of aliphatic amines with metal–nitrene species.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0041-1737759.
- Supporting Information
Publication History
Received: 07 December 2021
Accepted after revision: 20 December 2021
Article published online:
13 January 2022
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Blair LM, Sperry J. J. Nat. Prod. 2013; 76: 794
- 1b Oelke AJ, France DJ, Hofmann T, Wuitschik G, Ley SV. Nat. Prod. Rep. 2011; 28: 1445
- 1c Dean C, Rajkumar S, Roesner S, Carson N, Clarkson GJ, Wills M, Jones M, Shipman M. Chem. Sci. 2020; 11: 1636
- 2a Kang CW, Sarnowski MP, Elbatrawi YM, Del Valle JR. J. Org. Chem. 2017; 82: 1833
- 2b Rathman BM, Allen JL, Shaw LN, Del Valle JR. Bioorg. Med. Chem. Lett. 2020; 30: 127283
- 4a Vidal J, Hannachi J.-C, Hourdin G, Mulatier J.-C, Collet A. Tetrahedron Lett. 1998; 39: 8845
- 4b Armstrong A, Jones LH, Knight JD, Kelsey RD. Org. Lett. 2005; 7: 713
- 5a Rosen BR, Werner EW, O’Brien AG, Baran PS. J. Am. Chem. Soc. 2014; 136: 5571
- 5b Ryan MC, Martinelli JR, Stahl SS. J. Am. Chem. Soc. 2018; 140: 9074
- 5c Yin D, Jin J. Eur. J. Org. Chem. 2019; 5646
- 5d Vemuri PY, Patureau FW. Org. Lett. 2021; 23: 3902
- 6a Müller P, Fruit C. Chem. Rev. 2003; 103: 2905
- 6b Roizen JL, Harvey ME, Du Bois J. Acc. Chem. Res. 2012; 45: 911
- 6c Buendia J, Grelier G, Dauban P. Adv. Organomet. Chem. 2015; 64: 77
- 6d Darses B, Rodrigues R, Neuville L, Mazurais M, Dauban P. Chem. Commun. 2017; 53: 493
- 6e Hayashi H, Uchida T. Eur. J. Org. Chem. 2020; 909
- 6f Vine LE, Zerull EE, Schomaker JM. Synlett 2021; 32: 30
- 6g Rodríguez MR, Díaz-Requejo MM, Pérez PJ. Synlett 2021; 32: 763
- 6h Wang Y.-C, Lai X.-J, Huang K, Yadav S, Qiu G, Zhang L, Zhou H. Org. Chem. Front. 2021; 8: 1677
- 7a Jain SL, Sharma VB, Sain B. Tetrahedron Lett. 2003; 44: 4385
- 7b Li J, Cisar JS, Zhou C.-Y, Vera B, Williams H, Rodríguez AD, Cravatt BF, Romo D. Nat. Chem. 2013; 5: 510
- 7c Maestre L, Dorel R, Pablo Ó, Escofet I, Sameera WM. C, Álvarez E, Maseras F, Díaz-Requejo MM, Echavarren AM, Pérez PJ. J. Am. Chem. Soc. 2017; 139: 2216
- 8a Pujari SA, Guénée L, Lacour J. Org. Lett. 2013; 15: 3930
- 8b Kono M, Harada S, Nemoto T. Chem. Eur. J. 2019; 25: 3119
- 9a Ito M, Nakagawa T, Higuchi K, Sugiyama S. Org. Biomol. Chem. 2018; 16: 6876
- 9b Ito M, Mori M, Nakagawa T, Hori M, Higuchi K, Sugiyama S. Heterocycles 2021; 103: 403
- 10 Wang H, Jung H, Song F, Zhu S, Bai Z, Chen D, He G, Chang S, Chen G. Nat. Chem. 2021; 13: 378
- 11a Yang M, Wang X, Li H, Livant P. J. Org. Chem. 2001; 66: 6729
- 11b Li M.-L, Yu J.-H, Li Y.-H, Zhu S.-F, Zhou Q.-L. Science 2019; 366: 990
- 11c Shinohara H, Saito H, Homma H, Mizuta K, Miyairi S, Uchiyama T. Tetrahedron 2020; 76: 131619
- 12a Ito M, Tanaka A, Higuchi K, Sugiyama S. Eur. J. Org. Chem. 2017; 1272
- 12b Ito M, Tanaka A, Hatakeyama K, Kano E, Higuchi K, Sugiyama S. Org. Chem. Front. 2020; 7: 64
- 13 N-Benzyl-1-aminocyclopropanecarboxylate provided a similar result to 1a. We choose 1a as the substrate because purification of the N–H amination product 3ad was easier than that obtained from the N-benzyl substrate.
- 14 In our previous work, the reaction at higher concentration (0.1 M) led to the formation of azo compounds by dimerization of primary aromatic amines, see ref. 12a.
- 15 Typical Experimental Procedure 3,4-(MeO)2C6H3SO2N=IMes (5d, 554 mg, 1.20 mmol) was added to a stirred mixture of 1a (233 mg, 1.00 mmol), Rh2(esp)2 (15.2 mg, 2.00·10–2 mmol, 2 mol%), and MS 4 Å (powder, 400 mg) in CF3C6H5 (40 mL) at 0 °C under Ar atmosphere. After stirring at room temperature for 1 h, the whole mixture was filtered through a pad of Celite, and the filtrate was concentrated in vacuo to furnish the crude product, which was purified by column chromatography (silica gel, 1:1 n-hexane/AcOEt) to give 3ad (364 mg, 81%) as orange oil. IR (KBr): ν = 3279, 2933, 1722, 1511, 1165, 1029 cm–1. 1H NMR (400 MHz, CD3CN, 60 °C): δ = 0.90 (br d, 2 H, c-propane), 1.05 (t, J = 7.2 Hz, 3 H, CH2CH 3), 1.25 (br s, 2 H, c-propane), 2.21 (s, 3 H, ArCH3), 3.66 (s, 3 H, OCH3), 3.69 (s, 3 H, OCH3), 3.90 (q, J = 7.2 Hz, 2 H, CH 2CH3), 4.41 (s, 2 H, ArCH2), 6.60 (dd, J = 8.4, 2.6 Hz, 1 H, ArH), 6.62 (d, J = 2.6 Hz, 1 H, ArH), 6.77 (d, J = 8.4 Hz, 1 H, ArH), 7.02 (d, J = 8.0 Hz, 2 H, ArH), 7.09–7.11 (m, 3 H, NH and ArH). 13C NMR (100 MHz, CD3CN, 60 °C): δ = 14.6 (CH3), 20.1 (CH2), 21.3 (CH3), 43.6 (C), 54.8 (CH2), 56.9 (CH3), 57.2 (CH3), 62.5 (CH2), 109.9 (CH), 113.9 (CH), 116.8 (CH), 130.1 (CH), 130.5 (CH) 131.9 (C), 135.2 (C), 138.8 (C), 148.8 (C), 151.0 (C), 174.0 (C=O). HRMS (EI): m/z calcd for C22H28N2O6S [M]+: 448.1668; found: 448.1666.
Reviews, see:
It is reported that aminimides formed through the reactions of bicyclic aminals or (sulfon)amides and Rh(II)–nitrene underwent rearrangement to form formal C–N or S–N bond insertion products:
We previously reported ortho C–H amination of tertiary aromatic amines with Rh(II)–nitrene and presumed that the regioselectivity was due to the interaction between amino group and nitrogen atom of Rh(II)-nitrene:
An example of hydrazine formation from N-allylaniline is also reported in this study: