Planta Med 2017; 83(01/02): 172-182
DOI: 10.1055/s-0042-110857
Natural Product Chemistry and Analytical Studies
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

1HNMR-Based Discriminatory Analysis of Eurycoma longifolia from Different Locations and Establishing a Profile for Primary Metabolites Identification and Quassinoids Quantification

Forough Ebrahimi
1   Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
,
Baharudin Ibrahim
1   Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
,
Chin Hoe Teh
2   Bruker Malaysia Sdn Bhd, Selangor, Malaysia
,
Vikneswaran Murugaiyah
1   Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
,
Chan Kit Lam
1   Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
› Author Affiliations
Further Information

Publication History

received 09 February 2016
revised 30 May 2016

accepted 13 June 2016

Publication Date:
11 July 2016 (online)

Abstract

Quassinoids, the major secondary metabolites of Eurycoma longifolia roots, improve male fertility. Hence, it is crucial to investigate their quantitative level in E. longifolia extracts. A profile was established to identify the primary metabolites and major quassinoids, and quantify quassinoids using external calibration curves. Furthermore, the metabolic discrimination of E. longifolia roots from different regions was investigated. The 1H-NMR spectra of the quassinoids, eurycomanone, eurycomanol, 13,21-dihydroeurycomanone, and eurycomanol-2-O-β-D-glycopyranoside were obtained. The 1H-NMR profiles of E. longifolia root aqueous extracts from Perak (n = 30) were obtained and used to identify primary metabolites and the quassinoids. Selangor, Kedah, Terengganu (n = 5 for each), and Perak samples were checked for metabolic discrimination. Hotellingʼs T2 plot was used to check for outliers. Orthogonal partial least-squares discriminant analysis was run to reveal the discriminatory metabolites. Perak samples contained formic, succinic, methylsuccinic, fumaric, lactic, acetic and syringic acids as well as choline, alanine, phenylalanine, tyrosine, α-glucose, eurycomanone, eurycomanol, 13,21-dihydroeurycomanone, and eurycomanol-2-O-β-D-glycopyranoside. The extracts from other locations contained the same metabolites. The limit of quantification values were 1.96 (eurycomanone), 15.62 (eurycomanol), 3.91 (13,21-dihydroeurycomanone), and 31.25 (eurycomanol-2-O-β-D-glycopyranoside) ppm. The Hotellingʼs T2 plot revealed no outlier. The orthogonal partial least-squares discriminant analysis model showed that choline, eurycomanol, eurycomanol-2-O-β-D-glycopyranoside, and lactic and succinic acid levels were different among regions. Terengganu and Perak samples contained higher amounts of eurycomanol and eurycomanol-2-O-β-D-glycopyranoside, respectively. The current approach efficiently detected E. longifolia root metabolites, quantified the quassinoids, and discriminated E. longifolia roots from different locations. These findings could be applicable to future research on E. longifolia where the higher content of quassinoids is required.

Supporting Information

 
  • References

  • 1 Ang HH, Yukio H, Haruhiko F, Koichi T. Quassinoids from Eurycoma longifolia . Phytochemistry 2002; 59: 833-837
  • 2 Morita H, Kishi E, Takeya K, Itokawa H, Iitaka Y. Squalene derivatives from Eurycoma longifolia . Phytochemistry 1993; 34: 765-771
  • 3 Itokawa H, Kishi E, Morita H, Takeya K. Cytotoxic quassinoids and tirucallane-type triterpenes from the woods of Eurycoma longifolia . Chem Pharm Bull 1992; 40: 1053-1055
  • 4 Mitsunaga K, Koikea K, Tanakaa T, Ohkawaa Y, Kobayashia Y, Sawaguchia T, Ohmoto T. Canthin-6-one alkaloids from Eurycoma longifolia . Phytochemistry 1994; 35: 799-802
  • 5 Kuo PC, Shi LS, Damu AG, Su CR, Huang CH, Ke CH, Wu JB, Lin AJ, Bastow KF, Lee KH, Wu TS. Cytotoxic and antimalarial β-carboline alkaloids from the roots of Eurycoma longifolia . J Nat Prod 2003; 66: 1324-1327
  • 6 Darise M, Kohda H, Mizutani K, Tanaka O. Eurycomanone and eurycomanol, quassinoids from the roots of Eurycoma longifolia . Phytochemistry 1982; 21: 2091-2093
  • 7 Farouk AE, Benafri A. Antibacterial activity of Eurycoma longifolia Jack. A Malaysian medicinal plant. Saudi Med J 2007; 28: 1422-1424
  • 8 Ang HH, Sim MK. Eurycoma longifolia Jack enhances libido in sexually experienced male rats. Exp Anim 1997; 46: 287-290
  • 9 Chan KL, Choo CY, Abdullah NR. Semisynthetic 15-O-acyl- and 1,15-di-O-acyleurycomanones from Eurycoma longifolia as potential antimalarials. Planta Med 2005; 71: 967-969
  • 10 Tada H, Yasuda F, Otani K, Doteuchi M, Ishihara Y, Shiro M. New antiulcer quassinoids from Eurycoma longifolia . Eur J Med Chem 1991; 26: 345-349
  • 11 Kardono LBS, Angerhofer CK, Tsauri S, Padmawinata K, Pezzuto JM, Kinghorn AD. Cytotoxic and antimalarial constituents of the roots of Eurycoma longifolia . J Nat Prod 1991; 54: 1360-1367
  • 12 Zakaria Y, Rahmat A, Pihie AHL, Abdullah NR, Houghton PJ. Eurycomanone induce apoptosis in HepG2 cells via up-regulation of p53. Cancer Cell Int 2009; 9: 1-21
  • 13 Wahab NA, Mokhtar NM, Halim WN, Das S. The effect of Eurycoma longifolia Jack on spermatogenesis in estrogen-treated rats. Clinics 2010; 65: 93-98
  • 14 Ebrahimi F, Ibrahim B, Teh CH, Murugaiyah V, Chan KL. Urinary NMR-based metabolomic analysis of rats possessing variable sperm count following orally administered Eurycoma longifolia extracts of different quassinoid levels. J Ethnopharmacol 2016; 182: 80-89
  • 15 Kim HK, Choi YH, Verpoorte R. NMR-based metabolomic analysis of plants. Nat Protoc 2010; 5: 536-549
  • 16 Fiehn O, Weckwerth W. Deciphering metabolic networks. Eur J Biochem 2003; 270: 579-588
  • 17 Tikunov Y, Lommen A, de Vos CH, Verhoeven HA, Bino RJ, Hall RD, Bovy AG. A novel approach for nontargeted data analysis for metabolomics. Large-scale profiling of tomato fruit volatiles. Plant Physiol 2005; 139: 1125-1137
  • 18 Krishnan P, Kruger NJ, Ratcliffe RG. Metabolite fingerprinting and profiling in plants using NMR. J Exp Bot 2005; 56: 255-265
  • 19 Theodoridis G, Gika H, Franceschi P, Caputi L, Arapitsas P, Scholz M, Masuero D, Wehrens R, Vrhovsek U, Mattivi F. LC-MS based global metabolite profiling of grapes: solvent extraction protocol optimization. Metabolomics 2011; 8: 175-185
  • 20 Weckwerth W. Metabolomics in systems biology. Annu Rev Plant Biol 2003; 54: 669-689
  • 21 Nicolai BM, Beullens K, Bobelyn E, Peirs A, Saeys W, Theron KI, Lammertyn J. Non-destructive measurement of fruit and vegetable quality by means of NIR spectroscopy: a review. Postharvest Biol Technol 2007; 46: 99-118
  • 22 Cozzolino D, Cynkar WU, Shah N, Smith P. Multivariate data analysis applied to spectroscopy: Potential application to juice and fruit quality. Food Res Int 2011; 44: 1888-1896
  • 23 Mandal R, Guo AC, Chaudhary KK, Liu P, Yallou FS, Dong E, Aziat F, Wishart DS. Multi-platform characterization of the human cerebrospinal fluid metabolome: a comprehensive and quantitative update. Genome Med 2012; 4: 38
  • 24 Mounicou S, Szpunar J, Lobinski R. Inductively-coupled plasma mass spectrometry in proteomics, metabolomics and metallomics studies. Eur J Mass Spectrom (Chichester, Eng) 2010; 16: 243-253
  • 25 Nicholson JK, Wilson ID. Opinion: understanding ‘global’ systems biology: metabonomics and the continuum of metabolism. Nat Rev Drug Discov 2003; 2: 668-676
  • 26 Serkova NJ, Zhang Y, Coatney JL, Hunter L, Wachs ME, Niemann CU, Mandell MS. Early detection of graft failure using the blood metabolic profile of a liver recipient. Transplantation 2007; 83: 517-521
  • 27 Liang YS, Choi YH, Kim HK, Linthorst HJM, Verpoorte R. Metabolomic analysis of methyl jasmonate treated Brassica rapa leaves by 2-dimensional NMR spectroscopy. Phytochemistry 2006; 67: 2503-2511
  • 28 Monakhova YB, Tsikin AM, Kuballa T, Lachenmeier DW, Mushtakova SP. Independent component analysis (ICA) algorithms for improved spectral deconvolution of overlapped signals in 1H-NMR analysis: application to foods and related products. Magn Reson Chem 2014; 52: 231-240
  • 29 Maes P, Monakhova YB, Kuballa T, Reusch H, Lachenmeier DW. Qualitative and quantitative control of carbonated cola beverages using 1H-NMR spectroscopy. J Agric Food Chem 2012; 60: 2778-2784
  • 30 Fiehn O. Metabolomics – the link between genotypes and phenotypes. Plant Mol Biol 2002; 48: 155-171
  • 31 Low BS, Das PK, Chan KL. Acute, reproductive toxicity and two-generation teratology studies of a standardized quassinoid-rich extract of Eurycoma longifolia Jack in Sprague-Dawley rats. Phytother Res 2014; 28: 1022-1029
  • 32 Low BS, Choi SB, Abdul Wahab H, Das PK, Chan KL. Eurycomanone, the major quassinoid in Eurycoma longifolia root extract increases spermatogenesis by inhibiting the activity of phosphodiesterase and aromatase in steroidogenesis. J Ethnopharmacol 2013; 149: 201-207
  • 33 Low BS, Das PK, Chan KL. Standardized quassinoid-rich Eurycoma longifolia extract improved spermatogenesis and fertility in male rats via the hypothalamic-pituitary-gonadal axis. J Ethnopharmacol 2013; 145: 706-714
  • 34 Morita H, Kishi E, Takeya K, Itokawa H, Tanaka O. New quassinoids from the roots of Eurycoma longifolia . Chem Lett 1990; 19: 749-752
  • 35 Eriksson L, Johansson E, Kettaneh-Wold N, Trygg J, Wikström C, Wold S. Multi- and Megavariate Data Analysis, Part I: Basic Principles and Applications. Classification and Discrimination. Umeå: Umetrics; 2006: 375-376
  • 36 Chan KL, Lee S, Sama TW, Han BH. A quassinoid glycoside from the roots of Eurycoma longifolia . Phytochemistry 1989; 28: 2857-2859
  • 37 Teh CH, Murugaiyah V, Chan KL. Developing a validated liquid chromatography-mass spectrometric method for the simultaneous analysis of five bioactive quassinoid markers for the standardization of manufactured batches of Eurycoma longifolia Jack extract as antimalarial medicaments. J Chromatogr A 2011; 1218: 1861-1877
  • 38 Halouska S, Powers R. Negative impact of noise on the principal component analysis of NMR data. J Magn Reson 2006; 178: 88-95
  • 39 Wang Z, Chen Z, Yang S, Wang Y, Yu L, Zhang B, Rao Z, Gao J, Tu S. 1H-NMR-based metabolomic analysis for identifying serum biomarkers to evaluate methotrexate treatment in patients with early rheumatoid arthritis. Exp Ther Med 2012; 4: 165-171