Planta Med 2017; 83(09): 761-769
DOI: 10.1055/s-0042-124044
Biological and Pharmacological Activity
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Evodiamine Prevents Isoproterenol-Induced Cardiac Fibrosis by Regulating Endothelial-to-Mesenchymal Transition

Xiao-han Jiang*
1   Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China
2   Cardiovascular Research Institute of Wuhan University, Wuhan, P. R. China
3   Hubei Key Laboratory of Cardiology, Wuhan, P. R. China
,
Qing-qing Wu*
1   Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China
2   Cardiovascular Research Institute of Wuhan University, Wuhan, P. R. China
3   Hubei Key Laboratory of Cardiology, Wuhan, P. R. China
,
Yang Xiao
1   Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China
2   Cardiovascular Research Institute of Wuhan University, Wuhan, P. R. China
3   Hubei Key Laboratory of Cardiology, Wuhan, P. R. China
,
Yuan Yuan
1   Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China
2   Cardiovascular Research Institute of Wuhan University, Wuhan, P. R. China
3   Hubei Key Laboratory of Cardiology, Wuhan, P. R. China
,
Zheng Yang
1   Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China
2   Cardiovascular Research Institute of Wuhan University, Wuhan, P. R. China
3   Hubei Key Laboratory of Cardiology, Wuhan, P. R. China
,
Zhou-yan Bian
1   Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China
2   Cardiovascular Research Institute of Wuhan University, Wuhan, P. R. China
3   Hubei Key Laboratory of Cardiology, Wuhan, P. R. China
,
Wei Chang
1   Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China
2   Cardiovascular Research Institute of Wuhan University, Wuhan, P. R. China
3   Hubei Key Laboratory of Cardiology, Wuhan, P. R. China
,
Qi-zhu Tang
1   Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China
2   Cardiovascular Research Institute of Wuhan University, Wuhan, P. R. China
3   Hubei Key Laboratory of Cardiology, Wuhan, P. R. China
› Author Affiliations
Further Information

Publication History

received 29 April 2016
revised 03 December 2016

accepted 10 December 2016

Publication Date:
23 December 2016 (online)

Abstract

Evodiamine, a major component of Evodia rutaecarpa, can protect the myocardium against injury induced by atherosclerosis and ischemia-reperfusion. However, the effect of evodiamine against cardiac fibrosis remains unclear. This study aims to investigate the possible effect and mechanism involved in the function of evodiamine on isoproterenol-induced cardiac fibrosis and endothelial-to-mesenchymal transition. Isoproterenol was used to induce cardiac fibrosis in mice, and evodiamine was gavaged simultaneously. After 14 days, cardiac function was accessed by echocardiography. The extent of cardiac fibrosis and hypertrophy was evaluated by pathological and molecular analyses. The extent of endothelial-to-mesenchymal transition was evaluated by the expression levels of CD31, CD34, α-smooth muscle actin, and vimentin by immunofluorescence staining and Western blot analysis. After 14 days, the heart weight/body weight ratio and heart weight/tibia length ratio revealed no significant difference between the isoproterenol group and the isoproterenol/evodiamine-treated groups, whereas the increased heart weight was reduced in the isoproterenol/evodiamine-treated groups. Echocardiography revealed that interventricular septal thickness and left ventricular posterior wall thickness at the end diastole decreased in the evodiamine-treated groups. Evodiamine reduced isoproterenol-induced cardiac fibrosis as accessed by normalization in collagen deposition and gene expression of hypertrophic and fibrotic markers. Evodiamine also prevented endothelial-to-mesenchymal transition as evidenced by the increased expression levels of CD31 and CD34, decreased expression levels of α-smooth muscle actin and vimentin, and increased microvascular density in the isoproterenol/evodiamine-treated mice hearts. Furthermore, isoproterenol-induced activation of transforming growth factor-β1/Smad signal was also blunted by evodiamine. Therefore, evodiamine may prevent isoproterenol-induced cardiac fibrosis by regulating endothelial-to-mesenchymal transition, which is probably mediated by the blockage of the transforming growth factor-β1/Smad pathway.

* These two authors contributed equally to this work.


 
  • References

  • 1 Kong P, Christia P, Frangogiannis NG. The pathogenesis of cardiac fibrosis. Cell Mol Life Sci 2014; 71: 549-574
  • 2 Kovacic JC, Mercader N, Torres M, Boehm M, Fuster V. Epithelial-to-mesenchymal and endothelial-to-mesenchymal transition: from cardiovascular development to disease. Circulation 2012; 125: 1795-1808
  • 3 Piera-Velazquez S, Li Z, Jimenez SA. Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol 2011; 179: 1074-1080
  • 4 Arciniegas E, Neves YC, Carrillo LM. Potential role for insulin-like growth factor II and vitronectin in the endothelial-mesenchymal transition process. Differentiation 2006; 74: 277-292
  • 5 Yu W, Liu Z, An S, Zhao J, Xiao L, Gou Y, Lin Y, Wang J. The endothelial-mesenchymal transition (EndMT) and tissue regeneration. Curr Stem Cell Res Ther 2014; 9: 196-204
  • 6 Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circ Res 2005; 97: 512-523
  • 7 Kitao A, Sato Y, Sawada-Kitamura S, Harada K, Sasaki M, Morikawa H, Shiomi S, Honda M, Matsui O, Nakanuma Y. Endothelial to mesenchymal transition via transforming growth factor-β1/Smad activation is associated with portal venous stenosis in idiopathic portal hypertension. Am J Pathol 2009; 175: 616-626
  • 8 Stawski L, Han R, Bujor AM, Trojanowska M. Angiotensin II induces skin fibrosis: a novel mouse model of dermal fibrosis. Arthritis Res Ther 2012; 14: R194
  • 9 Aisagbonhi O, Rai M, Ryzhov S, Atria N, Feoktistov I, Hatzopoulos AK. Experimental myocardial infarction triggers canonical Wnt signaling and endothelial-to-mesenchymal transition. Dis Model Mech 2011; 4: 469-483
  • 10 Potenta S, Zeisberg E, Kalluri R. The role of endothelial-to-mesenchymal transition in cancer progression. Br J Cancer 2008; 99: 1375-1379
  • 11 Zhou X, Chen X, Cai JJ, Chen LZ, Gong YS, Wang LX, Gao Z, Zhang HQ, Huang WJ, Zhou H. Relaxin inhibits cardiac fibrosis and endothelial-mesenchymal transition via the Notch pathway. Drug Des Devel Ther 2015; 9: 4599-4611
  • 12 Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman A, McMullen JR, Gustafsson E, Chandraker A, Yuan X, Pu WT, Roberts AB, Neilson EG, Sayegh MH, Izumo S, Kalluri R. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 2007; 13: 952-961
  • 13 Widyantoro B, Emoto N, Nakayama K, Anggrahini DW, Adiarto S, Iwasa N, Yagi K, Miyagawa K, Rikitake Y, Suzuki T, Kisanuki YY, Yanagisawa M, Hirata K. Endothelial cell-derived endothelin-1 promotes cardiac fibrosis in diabetic hearts through stimulation of endothelial-to-mesenchymal transition. Circulation 2010; 121: 2407-2418
  • 14 Jiang J, Hu C. Evodiamine: a novel anti-cancer alkaloid from Evodia rutaecarpa . Molecules 2009; 14: 1852-1859
  • 15 Gavaraskar K, Dhulap S, Hirwani RR. Therapeutic and cosmetic applications of evodiamine and its derivatives – A patent review. Fitoterapia 2015; 106: 22-35
  • 16 Lee SH, Son JK, Jeong BS, Jeong TC, Chang HW, Lee ES, Jahng Y. Progress in the studies on rutaecarpine. Molecules 2008; 13: 272-300
  • 17 Wen Z, Feng S, Wei L, Wang Z, Hong D, Wang Q. Evodiamine, a novel inhibitor of the Wnt pathway, inhibits the self-renewal of gastric cancer stem cells. Int J Mol Med 2015; 36: 1657-1663
  • 18 Wei J, Ching LC, Zhao JF, Shyue SK, Lee HF, Kou YR, Lee TS. Essential role of transient receptor potential vanilloid type 1 in evodiamine-mediated protection against atherosclerosis. Acta Physiol (Oxf) 2013; 207: 299-307
  • 19 Rang WQ, Du YH, Hu CP, Ye F, Xu KP, Peng J, Deng HW, Li YJ. Protective effects of evodiamine on myocardial ischemia-reperfusion injury in rats. Planta Med 2004; 70: 1140-1143
  • 20 Wei J, Li Z, Yuan F. Evodiamine might inhibit TGF-β1-induced epithelial-mesenchymal transition in NRK52E cells via Smad and PPAR-γ pathway. Cell Biol Int 2014; 38: 875-880
  • 21 Li F, Yuan Y, Zhang N, Wu Q, Li J, Zhou M, Yang Z, Tang Q. Evodiamine attenuates pressure overload-induced cardiac hypertrophy. Int J Clin Exp Med [in press]
  • 22 Xu X, Tan X, Tampe B, Nyamsuren G, Liu X, Maier LS, Sossalla S, Kalluri R, Zeisberg M, Hasenfuss G, Zeisberg EM. Epigenetic balance of aberrant Rasal1 promoter methylation and hydroxymethylation regulates cardiac fibrosis. Cardiovasc Res 2015; 105: 279-291
  • 23 Teekakirikul P, Eminaga S, Toka O, Alcalai R, Wang L, Wakimoto H, Nayor M, Konno T, Gorham JM, Wolf CM, Kim JB, Schmitt JP, Molkentin JD, Norris RA, Tager AM, Hoffman SR, Markwald RR, Seidman CE, Seidman JG. Cardiac fibrosis in mice with hypertrophic cardiomyopathy is mediated by non-myocyte proliferation and requires TGF-β . J Clin Invest 2010; 120: 3520-3529
  • 24 Arciniegas E, Frid MG, Douglas IS, Stenmark KR. Perspectives on endothelial-to-mesenchymal transition: potential contribution to vascular remodeling in chronic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2007; 293: l1-l8
  • 25 Welch-Reardon KM, Wu N, Hughes CCW. A role for partial endothelial-mesenchymal transitions in angiogenesis?. Arterioscler Thromb Vasc Biol 2015; 35: 303-308
  • 26 Zhou H, Chen X, Chen L, Zhou X, Zheng G, Zhang H, Huang W, Cai J. Anti-fibrosis effect of scutellarin via inhibition of endothelial-mesenchymal transition on isoprenaline-induced myocardial fibrosis in rats. Molecules 2014; 19: 15611-15623
  • 27 Leask A. Getting to the heart of the matter: new insights into cardiac fibrosis. Circ Res 2015; 116: 1269-1276
  • 28 Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 2003; 425: 577-584
  • 29 Leask A. Potential therapeutic targets for cardiac fibrosis: TGFβ, angiotensin, endothelin, CCN2, and PDGF, partners in fibroblast activation. Circ Res 2010; 106: 1675-1680
  • 30 Zhang YQ, Wei XL, Liang YK, Chen WL, Zhang F, Bai JW, Qiu SQ, Du CW, Huang WH, Zhang GJ. Over-expressed twist associates with markers of epithelial mesenchymal transition and predicts poor prognosis in breast cancers via Erk and Akt activation. PLoS One 2015; 10: e0135851
  • 31 Li J, Xiong J, Yang B, Zhou Q, Wu Y, Luo H, Zhou H, Liu N, Li Y, Song Z, Zheng Q. Endothelial cell apoptosis induces TGF-β signaling-dependent host endothelial-mesenchymal transition to promote transplant arteriosclerosis. Am J Transplant 2015; 15: 3095-3111
  • 32 Ji Y, Dou YN, Zhao QW, Zhang JZ, Yang Y, Wang T, Xia YF, Dai Y, Wei ZF. Paeoniflorin suppresses TGF-β mediated epithelial-mesenchymal transition in pulmonary fibrosis through a Smad-dependent pathway. Acta Pharmacol Sin 2016; 37: 794-804
  • 33 Hong JY, Park SH, Min HY, Park HJ, Lee SK. Anti-proliferative effects of evodiamine in human lung cancer cells. J Cancer Prev 2014; 19: 7-13
  • 34 Wang S, Wang L, Shi Z, Zhong Z, Chen M, Wang Y. Evodiamine synergizes with doxorubicin in the treatment of chemoresistant human breast cancer without inhibiting P-glycoprotein. PLoS One 2014; 9: e97512
  • 35 Wei WT, Chen H, Wang ZH, Ni ZL, Liu HB, Tong HF, Guo HC, Liu DL, Lin SZ. Enhanced antitumor efficacy of gemcitabine by evodiamine on pancreatic cancer via regulating PI3K/Akt pathway. Int J Biol Sci 2012; 8: 1-14
  • 36 Meng ZJ, Wu N, Liu Y, Shu KJ, Zou X, Zhang RX, Pi CJ, He BC, Ke ZY, Chen L, Deng ZL, Yin LJ. Evodiamine inhibits the proliferation of human osteosarcoma cells by blocking PI3K/Akt signaling. Oncol Rep 2015; 34: 1388-1396
  • 37 Yuan SM, Gao K, Wang DM, Quan XZ, Liu JN, Ma CM, Qin C, Zhang LF. Evodiamine improves congnitive abilities in SAMP8 and APP(swe)/PS1(ΔE9) transgenic mouse models of Alzheimerʼs disease. Acta Pharmacol Sin 2011; 32: 295-302
  • 38 Zhao T, Zhang X, Zhao Y, Zhang L, Bai X, Zhang J, Zhao X, Chen L, Wang L, Cui L. Pretreatment by evodiamine is neuroprotective in cerebral ischemia: up-regulated pAkt, pGSK3β, down-regulated NF-κB expression, and ameliorated BBB permeability. Neurochem Res 2014; 39: 1612-1620