Synthesis 2023; 55(07): 1139-1149
DOI: 10.1055/s-0042-1751392
paper

A Density Functional Theory Study on the Cobalt-Mediated Intramolecular Pauson–Khand Reaction of Enynes Containing a Vinyl Fluoride Moiety

Financial support by the Spanish Ministerio de Ciencia, Innovación y Universidades (MICINN) and Agencia Estatal de Investigación (AEI) under project CTQ2017-84249-P is acknowledged.


Abstract

The Co2(CO)8-mediated intramolecular Pauson–Khand reaction (PKR) is an effective method for constructing polycyclic structures. Recently, our group reported a series of this type of reaction involving fluorinated enynes that proceed with reasonable reaction rates and yields. However, mechanistic studies involving these fluorinated derivatives in intramolecular PKR are scarce. In this study, density functional theory calculations are used to clarify the mechanism and reactivity of enynes containing a vinyl fluoride moiety for this reaction. In agreement with previous studies, alkene insertion is considered to be the rate-determining step for the overall Pauson–Khand reaction of enynes containing a vinyl fluoride moiety. The effect of the substituent on the Co2(CO)8-mediated intramolecular Pauson–Khand reaction has also been investigated. When introducing heteroatoms as tethering units, the fluorinated enynes exhibited lower reactivity than the malonate homologues, whereas the use of a sulfur-based tether was unsuccessful. This computational study provides detailed information about the PKR mechanism and transition-state structures, and the results are validated with previous experimental results.

Supporting Information



Publikationsverlauf

Eingereicht: 11. Oktober 2022

Angenommen nach Revision: 15. November 2022

Artikel online veröffentlicht:
13. Dezember 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Inoue M, Sumii Y, Shibata N. ACS Omega 2020; 5: 10633
  • 2 Wang Q, Han J, Sorochinsky A, Landa A, Butler G, Soloshonok VA. Pharmaceuticals 2022; 15: 999
  • 3 Tiz DB, Bagnoli L, Rosati O, Marini F, Sancineto L, Santi C. Molecules 2022; 27: 1643
  • 4 Yu Y, Liu A, Dhawan G, Mei H, Zhang W, Izawa K, Soloshonok VA, Han J. Chin. Chem. Lett. 2021; 32: 3342
  • 5 He J, Li Z, Dhawan G, Zhang W, Sorochinsky AE, Butler G, Soloshonok VA, Han J. Chin. Chem. Lett. 2023; 34: 107578
  • 6 Zhang C, Yan K, Fu C, Peng H, Hawker CJ, Whittaker AK. Chem. Rev. 2022; 122: 167
  • 7 Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
  • 8 Burki TK. Lancet Respir. Med. 2022; 10: e18
  • 9 Shindo Y, Kondoh Y, Kada A, Doi Y, Tomii K, Mukae H, Murata N, Imai R, Okamoto M, Yamano Y, Miyazaki Y, Shinoda M, Aso H, Izumi S, Ishii H, Ito R, Saito AM, Saito TI, Hasegawa Y. Infect. Dis. Ther. 2021; 10: 2353
  • 10 Shionoya K, Yamasaki M, Iwanami S, Ito Y, Fukushi S, Ohashi H, Saso W, Tanaka T, Aoki S, Kuramochi K, Iwami S, Takahashi Y, Suzuki T, Muramatsu M, Takeda M, Wakita T, Watashi K. Front. Microbiol. 2021; 12: 989
  • 11 Fu B, Escorihuela J, Han J, Fustero S, Barrio P, Sodeoka M, Kawamura S, Sorochinsky A, Soloshonok VA. Molecules 2021; 26: 7221
  • 12 Llobat A, Escorihuela J, Ramírez de Arellano C, Fustero S, Medio-Simón M. Org. Biomol. Chem. 2022; 20: 2433
  • 13 Jiménez-Núñez E, Echavarren AM. Chem. Rev. 2008; 108: 3326
  • 14 Vicente R, Tudela E, Rodríguez MA, Suárez-Sobrino AL, Ballesteros A. Chem. Commun. 2022; 58: 8206
  • 15 Munakala A, Chegondi R. Org. Lett. 2021; 23: 317
  • 16 Masutomi K, Noguchi K, Tanaka K. J. Am. Chem. Soc. 2014; 136, 21: 7627
  • 17 Suzuki S, Shibata Y, Tanaka K. Chem. Eur. J. 2020; 26: 3656
  • 18 Llobat A, Escorihuela J, Sedgwick DM, Rodenes M, Roman R, Soloshonok VA, Han J, Medio-Simon M, Fustero S. Eur. J. Org. Chem. 2020; 4193
  • 19 Yan Z, Yuan X.-A, Zhao Y, Zhu C, Xie J. Angew. Chem. Int. Ed. 2018; 57: 12906
  • 20 Mao J, Li H, Wen H, Li M, Fan X, Bao W. Adv. Synth. Catal. 2016; 358: 1873
  • 21 Yamamoto Y, Hayashi H, Saigoku T, Nishiyama H. J. Am. Chem. Soc. 2005; 127: 10804
  • 22 Fernández DF, Rodrigues CA. B, Calvelo M, Gulías M, Mascareñas JL, López F. ACS Catal. 2018; 8: 7397
  • 23 Sun C.-L, Shi Z.-J. Chem. Rev. 2014; 114: 9219
  • 24 Khand IU, Knox GR, Pauson PL, Watts WE. J. Chem. Soc. D 1971; 36a
  • 25 Khand IU, Knox GR, Pauson PL, Watts WE. J. Chem. Soc., Perkin Trans. 1 1973; 975
  • 26 Park JH, Chang K, Chung YK. Coord. Chem. Rev. 2009; 253: 2461
  • 27 Blanco-Urgoiti J, Anorbe L, Pérez-Serrano L, Domínguez G, Pérez-Castells J. Chem. Soc. Rev. 2004; 33: 32
  • 28 Balsells J, Vazquez J, Moyano A, Pericàs MA, Riera A. J. Org. Chem. 2000; 65: 7291
  • 29 Pericàs MA, Balsells J, Castro J, Marchueta I, Moyano A, Riera A, Vázquez J, Verdaguer X. Pure Appl. Chem. 2002; 74: 167
  • 30 Kent JL, Wan HH, Brummond KM. Tetrahedron Lett. 1995; 36: 2407
  • 31 Adrio J, Rivero MR, Carretero JC. Org. Lett. 2005; 7: 431
  • 32 Jeong N, Sung BK, Choi YK. J. Am. Chem. Soc. 2000; 122: 6771
  • 33 Wang HJ, Sawyer JR, Evans PA, Baik MH. Angew. Chem. Int. Ed. 2008; 47: 342
  • 34 Kondo T, Nomura M, Ura Y, Wada K, Mitsudo T. J. Am. Chem. Soc. 2006; 128: 14816
  • 35 Miura H, Takeuchi K, Shishido T. Angew. Chem. Int. Ed. 2016; 55: 278
  • 36 Hicks FA, Kablaoui NM, Buchwald SL. J. Am. Chem. Soc. 1999; 121: 5881
  • 37 Zhao ZB, Ding Y, Zhao G. J. Org. Chem. 1998; 63: 9285
  • 38 Shibata T, Takagi K. J. Am. Chem. Soc. 2000; 122: 9852
  • 39 Kwong FY, Lee HW, Lam WH, Qiu LQ, Chan AS. C. Tetrahedron: Asymmetry 2006; 17: 1238
  • 40 Zhang MH, Buchwald SL. J. Org. Chem. 1996; 61: 4498
  • 41 Shibata T, Koga Y, Narasaka K. Bull. Chem. Soc. Jpn. 1995; 68: 911
  • 42 Park JH, Chang K, Chung YK. Coord. Chem. Rev. 2009; 253: 2461
  • 43 Escorihuela J, Sedgwick DM, Llobat A, Medio-Simón M, Barrio P, Fustero S. Beilstein J. Org. Chem. 2020; 16: 1662
  • 44 Chen S, Jiang C, Zheng N, Yang Z, Shi L. Catalysts 2020; 10: 1199
  • 45 Dalpozzo R, Mancuso R. Catalysts 2021; 11: 1382
  • 46 Llobat A, Sedgwick DM, Cabré A, Román R, Mateu N, Escorihuela J, Medio-Simón M, Soloshonok V, Han J, Riera A, Fustero S. Adv. Synth. Catal. 2020; 362: 1378
  • 47 Llobat A, Román R, Mateu N, Sedgwick DM, Barrio P, Medio-Simón M, Fustero S. Org. Lett. 2019; 21: 7294
  • 48 Román R, Mateu N, López I, Medio-Simon M, Fustero S, Barrio P. Org. Lett. 2019; 21: 2569
  • 49 Yamanaka M, Nakamura E. J. Am. Chem. Soc. 2001; 123: 1703
  • 50 De Bruin TJ. M, Michel C, Vekey K, Greene AE, Gimbert Y, Milet A. J. Organomet. Chem. 2006; 691: 4281
  • 51 Verdaguer X, Vazquez J, Fuster G, Bernardes-Genisson V, Greene AE, Moyano A, Pericàs MA, Riera A. J. Org. Chem. 1998; 63: 7037
  • 52 Magnus P, Principle LM. Tetrahedron Lett. 1985; 26: 4851
  • 53 Liu L, Shen H, Yu Z, Shi L, Yang Z, Lan Y. Organometallics 2014; 33: 6282
  • 54 Zhu L, Wang Z, Liu S, Zhang T, Yang Z, Bai R, Lan Y. Chin. Chem. Lett. 2019; 30: 889
  • 55 Wang Y, Liu K, Yu Z.-X, Jia Y. Tetrahedron Lett. 2019; 60: 151001
  • 56 Escorihuela J, Wolf LM. Organometallics 2022; 41: 2525
  • 57 Kozuch S, Shaik S. Acc. Chem. Res. 2011; 44: 101
  • 58 Kozuch S. WIREs Comput. Mol. Sci. 2012; 2: 795
  • 59 Bickelhaupt FM, Houk KN. Angew. Chem. Int. Ed. 2017; 56: 10070
  • 60 Liu F, Liang Y, Houk KN. Acc. Chem. Res. 2017; 50: 2297
  • 61 Schoenebeck F, Ess DH, Jones GO, Houk KN. J. Am. Chem. Soc. 2009; 131: 8121
  • 62 Garcia-Hartjes J, Dommerholt J, Wennekes T, van Delft FL, Zuilhof H. Eur. J. Org. Chem. 2013; 3712
  • 63 Escorihuela J, Looijen WJ. E, Wang X, Aquino AJ. A, Lischka H, Zuilhof H. J. Org. Chem. 2020; 85: 13557
  • 64 Escorihuela J, Das A, Looijen WJ. E, van Delft FL, Aquino AJ. A, Lischka H, Zuilhof H. J. Org. Chem. 2018; 83: 244
  • 65 Liu F, Liang Y, Houk KN. J. Am. Chem. Soc. 2014; 136: 11483
  • 66 García-Aznar P, Escorihuela J. Org. Biomol. Chem. 2022; 20: 6400
  • 67 Hansen T, Vermeeren P, de Jong L, Bickelhaupt FM, Hamlin TA. J. Org. Chem. 2022; 87: 8892
  • 68 Vermeeren P, Hansen T, Jannsen P, Swart M, Hamlin TA, Bickelhaupt FM. Chem. Eur. J. 2020; 26: 15538
  • 69 Masood Ahmad S, Dalla Tiezza M, Orian L. Catalysts 2019; 9: 679
  • 70 Zhang Q, Ma Y, Zeng A. Catalysts 2022; 12: 654
  • 71 The stereochemistry of the products was established based on 2D NMR HOESY experiments.
  • 72 Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W. J. Am. Chem. Soc. 2010; 132: 6498
  • 73 Code colors for NCI analysis: Blue regions show attractive noncovalent interactions, such as dipole–dipole interactions or hydrogen bonding. Green regions indicate weak noncovalent interactions, such as π-π stacking and van der Waals interactions. Red regions show nonbonding, steric clashes.
  • 74 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian 16, Revision C.01 . Gaussian, Inc; Wallingford CT: 2016
  • 75 Peverati R, Truhlar DG. J. Phys. Chem. Lett. 2011; 2: 2810
  • 76 Ehlers AW, Biihme M, Dapprich S, Gobbi A, Hijllwarth A, Jonas V, Kiihler KF, Stegmann R, Veldkamp A, Frenking G. Chem. Phys. Lett. 1993; 208: 111
  • 77 Miertuš S, Scrocco E, Tomasi J. Chem. Phys. 1981; 55: 117
  • 78 Gonzalez C, Schlegel HB. J. Phys. Chem. 1990; 94: 5523
  • 79 Fukui K. Acc. Chem. Res. 1981; 14: 363
  • 80 Camaioni DM, Schwerdtfeger CA. J. Phys. Chem. A 2005; 109: 10795
  • 81 Legault CY. CYLview20. Canada: Université de Sherbrooke; 2020 http://www.cylview.org
  • 82 Contreras-García J, Johnson ER, Keinan S, Chaudret R, Piquemal JP, Beratan DN, Yang W. J. Chem. Theory Comput. 2011; 7: 625