Klin Monbl Augenheilkd 2017; 234(03): 311-319
DOI: 10.1055/s-0043-100631
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Adaptive Optiken – Möglichkeiten für die Diagnostik hereditärer Netzhauterkrankungen

Potential of Adaptive Optics for the Diagnostic Evaluation of Hereditary Retinal Diseases
J. L. Reiniger*
Universitäts-Augenklinik Bonn, Universitätsklinikum Bonn
,
N. Domdei*
Universitäts-Augenklinik Bonn, Universitätsklinikum Bonn
,
M. Pfau
Universitäts-Augenklinik Bonn, Universitätsklinikum Bonn
,
P. L. Müller
Universitäts-Augenklinik Bonn, Universitätsklinikum Bonn
,
F. G. Holz
Universitäts-Augenklinik Bonn, Universitätsklinikum Bonn
,
W. M. Harmening
Universitäts-Augenklinik Bonn, Universitätsklinikum Bonn
› Author Affiliations
Further Information

Publication History

eingereicht 07 October 2016

akzeptiert 21 December 2016

Publication Date:
29 March 2017 (online)

Zusammenfassung

Adaptive Optiken (AO) stellen eine technologische Schlüsselinnovation für die Bildgebung in der Ophthalmologie dar. Mit AO ausgestattete Ophthalmoskope erlauben es, die mikroskopische Netzhautstruktur nicht invasiv und auf zellulärer Ebene darzustellen. So kann die strukturelle Integrität der retinalen Nervenfaserschicht, des perifovealen Kapillarnetzwerks, einzelner Stäbchen- und Zapfenphotorezeptoren und des zellulären Mosaiks des retinalen Pigmentepithels in vivo beobachtet werden. Für die Beurteilung des Verlaufs von Netzhauterkrankungen, einer möglichen pharmakologischen Intervention und die Entschlüsselung der zugrunde liegenden physiologischen Mechanismen bedeutet dies eine völlig neue Untersuchungsebene. Insbesondere monogenetische Erkrankungen liegen im Fokus der aktuellen Forschung. Zum einen können Rückschlüsse auf einzelne Pathologien anderer multifaktorieller Netzhauterkrankungen gezogen und so die zugrundeliegenden physiologischen Mechanismen bzw. Verläufe genauer untersucht werden (Modellerkrankung). Zum anderen werden auch im Hinblick auf aktuelle und kommende Interventionen (u. a. Gentherapie) neuartige und zuverlässige Endpunkte zur Interpretation des Therapieerfolgs notwendig. Erste kommerzielle AO-Ophthalmoskope sind für den klinischen Einsatz erhältlich, und die Zahl mit AO untersuchter Netzhautpathologien wächst zunehmend. Für eine zellgenaue Struktur-Funktions-Korrelation kann jüngstens eine AO-basierte Mikrostimulationstechnologie eingesetzt werden.

Abstract

The use of adaptive optics in ophthalmoscopy is a breakthrough technological achievement. With AO ophthalmoscopes, the microscopic retinal structure can be visualised non-invasively and on a cellular level, allowing for cellular scale imaging of the retinal nerve fibre layer, the smallest retinal capillaries, rod and cone photoreceptors, and the retinal pigment epithelium mosaic in the living subject. Regarding the diagnostic evaluation of retinal diseases, the current research focuses on monogenetic retinal diseases, which – when better understood – may allow for conclusions to be drawn about other multifactorial diseases and their underlying mechanisms (model disease). For disease monitoring and current and future pharmacological intervention (e.g. gene therapy), they will help to better establish novel and reliable clinical endpoints. New AO imaging devices have just become commercially available, and the number of retinal pathologies visualised with AO is increasing. Recently, an AO-based microstimulation technique has been introduced, which offers the possibility to directly correlate retinal structure with visual function on a cellular level.

* Geteilte Erstautorenschaft.


 
  • Literatur

  • 1 Von Helmholtz H. Die neueren Fortschritte in der Theorie des Sehens. Populärwissenschaftliche Vorträge 1871; 2: 21-22
  • 2 Hardy JW, Lefebvre JE, Koliopoulos CL. Real-time atmospheric compensation. J Opt Soc Am 1977; 67: 360-369
  • 3 Liang J, Williams DR, Miller DT. Supernormal vision and high-resolution retinal imaging through adaptive optics. J Opt Soc Am A Opt Image Sci Vis 1997; 14: 2884-2892
  • 4 Miller DT, Roorda A. Adaptive Optics in Retinal Miscroscopy and Vision. In: Bass M. ed. Handbook of Optics, Volume III. New York: McGraw-Hill Professional; 2010: 15.1-15.30
  • 5 Williams DR. Imaging single cells in the living retina. Vision Res 2011; 51: 1379-1396
  • 6 Roorda A, Duncan JL. Adaptive optics ophthalmoscopy. Annu Rev Vis Sci 2015; 1: 19-50
  • 7 Dubra A, Sulai Y, Norris JL. et al. Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope. Biomed Opt Express 2011; 2: 1864-1876
  • 8 Curcio CA, Sloan KR, Kalina RE. et al. Human photoreceptor topography. J Comp Neurol 1990; 292: 497-523
  • 9 Zhang J, Yang Q, Saito K. et al. An adaptive optics imaging system designed for clinical use. Biomed Opt Express 2015; 6: 1864-1876
  • 10 Mu Q, Cao Z, Li D. et al. Liquid crystal based adaptive optics system to compensate both low and high order aberrations in a model eye. Opt Express 2007; 15: 1946-1953
  • 11 Liang J, Grimm B, Goelz S. et al. Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor. J Opt Soc Am A Opt Image Sci Vis 1994; 11: 1949-1957
  • 12 Fernández EJ, Iglesias I, Artal P. Closed-loop adaptive optics in the human eye. Opt Lett 2001; 26: 746-748
  • 13 Vohnsen B, Valente D. Surface-plasmon-based wavefront sensing. Optica 2015; 2: 1024
  • 14 Hofer H, Sredar N, Queener H. et al. Wavefront sensorless adaptive optics ophthalmoscopy in the human eye. Opt Express 2011; 19: 14160-14171
  • 15 Merino D, Loza-Alvarez P. Adaptive optics scanning laser ophthalmoscope imaging: technology update. Clin Ophthalmol 2016; 10: 743-755
  • 16 Roorda A, Romero-Borja F, Donnelly III W. et al. Adaptive optics scanning laser ophthalmoscopy. Opt Express 2002; 10: 405-412
  • 17 Hermann B, Fernández EJ, Unterhuber A. et al. Adaptive-optics ultrahigh-resolution optical coherence tomography. Opt Lett 2004; 29: 2142-2144
  • 18 Jonnal RS, Kocaoglu OP, Zawadzki RJ. et al. A review of adaptive optics optical coherence tomography: technical advances, scientific applications, and the future. Invest Ophthalmol Vis Sci 2016; 57: OCT51-OCT68
  • 19 Jonnal RS, Besecker JR, Derby JC. et al. Imaging outer segment renewal in living human cone photoreceptors. Opt Express 2010; 18: 5257-5270
  • 20 Kocaoglu OP, Liu Z, Zhang F. et al. Photoreceptor disc shedding in the living human eye. Biomed Opt Express 2016; 7: 4554-4568
  • 21 Romero-Borja F, Venkateswaran K, Roorda A. et al. Optical slicing of human retinal tissue in vivo with the adaptive optics scanning laser ophthalmoscope. Appl Opt 2005; 44: 4032-4040
  • 22 Carroll J, Kay DB, Scoles D. et al. Adaptive optics retinal imaging – clinical opportunities and challenges. Curr Eye Res 2013; 38: 709-721
  • 23 Tam J, Martin JA, Roorda A. Noninvasive visualization and analysis of parafoveal capillaries in humans. Invest Ophthalmol Vis Sci 2010; 51: 1691-1698
  • 24 Wade AR, Fitzke FW. In vivo imaging of the human cone-photoreceptor mosaic using a confocal LSO. Lasers Light Ophthalmol 1998; 8: 129-136
  • 25 Roorda A, Williams DR. Optical fiber properties of individual human cones. J Vis 2002; 2: 404-412
  • 26 Merino D, Duncan JL, Tiruveedhula P. et al. Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope. Biomed Opt Express 2011; 2: 2189-2201
  • 27 Scoles D, Sulai YN, Dubra A. In vivo dark-field imaging of the retinal pigment epithelium cell mosaic. Biomed Opt Express 2013; 4: 1710-1723
  • 28 Roorda A, Zhang Y, Duncan JL. High-resolution in vivo imaging of the RPE mosaic in eyes with retinal disease. Invest Ophthalmol Vis Sci 2007; 48: 2297-2303
  • 29 Chen MF, Chui TY, Alhadeff P. et al. Adaptive optics imaging of healthy and abnormal regions of retinal nerve fiber bundles of patients with glaucoma. Invest Ophthalmol Vis Sci 2015; 56: 674-681
  • 30 Hood DC, Chen MF, Lee D. et al. Confocal adaptive optics imaging of peripapillary nerve fiber bundles: implications for glaucomatous damage seen on circumpapillary OCT scans. Transl Vis Sci Technol 2015; 4: 12
  • 31 Hood DC, Fortune B, Mavrommatis MA. et al. Details of glaucomatous damage are better seen on OCT en face images than on OCT retinal nerve fiber layer thickness maps. Invest Ophthalmol Vis Sci 2015; 56: 6208-6216
  • 32 Scoles D, Higgins BP, Cooper RF. et al. Microscopic inner retinal hyper-reflective phenotypes in retinal and neurologic disease. Invest Ophthalmol Vis Sci 2014; 55: 4015-4029
  • 33 Martin JA, Roorda A. Direct and noninvasive assessment of parafoveal capillary leukocyte velocity. Ophthalmology 2005; 112: 2219-2224
  • 34 Popovic Z, Knutsson P, Thaung J. et al. Noninvasive imaging of human foveal capillary network using dual-conjugate adaptive optics. Invest Ophthalmol Vis Sci 2011; 52: 2649-2655
  • 35 Pinhas A, Dubow M, Shah N. et al. In vivo imaging of human retinal microvasculature using adaptive optics scanning light ophthalmoscope fluorescein angiography. Biomed Opt Express 2013; 4: 1305-1317
  • 36 Chui TYP, Gast TJ, Burns SA. Imaging of vascular wall fine structure in the human retina using adaptive optics scanning laser ophthalmoscopy. Invest Ophthalmol Vis Sci 2013; 54: 7115-7124
  • 37 Koch E, Rosenbaum D, Brolly A. et al. Morphometric analysis of small arteries in the human retina using adaptive optics imaging: relationship with blood pressure and focal vascular changes. J Hypertens 2014; 32: 890-898
  • 38 Fang PP, Harmening WM, Müller PL. et al. [Technical principles of OCT angiography]. Ophthalmologe 2016; 113: 6-13
  • 39 Dubow M, Pinhas A, Shah N. et al. Classification of human retinal microaneurysms using adaptive optics scanning light ophthalmoscope fluorescein angiography. Invest Ophthalmol Vis Sci 2014; 55: 1299-1309
  • 40 Morgan JIW, Han G, Klinman E. et al. High-resolution adaptive optics retinal imaging of cellular structure in choroideremia. Invest Ophthalmol Vis Sci 2014; 55: 6381-6397
  • 41 Roorda A, Williams DR. The arrangement of the three cone classes in the living human eye. Nature 1999; 397: 520-522
  • 42 Dubra A, Sulai Y, Norris JL. et al. Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope. Biomed Opt Express 2011; 2: 1864-1876
  • 43 Doble N, Choi SS, Codona JL. et al. In vivo imaging of the human rod photoreceptor mosaic. Opt Lett 2011; 36: 31-33
  • 44 Harmening WM, Tuten WS, Roorda A. et al. Mapping the perceptual grain of the human retina. J Neurosci 2014; 34: 5667-5677
  • 45 Pallikaris A, Williams DR, Hofer HJ. The reflectance of single cones in the living human eye. Invest Ophthalmol Vis Sci 2003; 44: 4580-4592
  • 46 Scoles D, Sulai YN, Langlo CS. et al. In vivo imaging of human cone photoreceptor inner segments. Invest Ophthalmol Vis Sci 2014; 55: 4244-4251
  • 47 Langlo CS, Patterson EJ, Higgins BP. et al. Residual foveal cone structure in CNGB3-associated achromatopsia. Invest Ophthalmol Vis Sci 2016; 57: 3984-3995
  • 48 Bruce KS, Harmening WM, Langston BR. et al. Normal perceptual sensitivity arising from weakly reflective cone photoreceptors. Invest Ophthalmol Vis Sci 2015; 56: 4431-4438
  • 49 Chiu SJ, Lokhnygina Y, Dubis AM. et al. Automatic cone photoreceptor segmentation using graph theory and dynamic programming. Biomed Opt Express 2013; 4: 924-937
  • 50 Lombardo M, Parravano M, Serrao S. et al. Investigation of adaptive optics imaging biomarkers for detecting pathological changes of the cone mosaic in patients with type 1 diabetes mellitus. PLoS One 2016; 11: e0151380
  • 51 Ratnam K, Carroll J, Porco TC. et al. Relationship between foveal cone structure and clinical measures of visual function in patients with inherited retinal degenerations. Invest Ophthalmol Vis Sci 2013; 54: 5836-5847
  • 52 Wilk MA, Dubis AM, Cooper RF. et al. Assessing the spatial relationship between fixation and foveal specializations. Vision Res 2016;
  • 53 Chen Y, Roorda A, Duncan JL. Advances in imaging of Stargardt disease. Adv Exp Med Biol 2010; 664: 333-340
  • 54 Chen Y, Ratnam K, Sundquist SM. et al. Cone photoreceptor abnormalities correlate with vision loss in patients with Stargardt disease. Invest Ophthalmol Vis Sci 2011; 52: 3281-3292
  • 55 Song H, Rossi EA, Latchney L. et al. Cone and rod loss in Stargardt disease revealed by adaptive optics scanning light ophthalmoscopy. JAMA Ophthalmol 2015; 133: 1198-1203
  • 56 Razeen MM, Cooper RF, Langlo CS. et al. Correlating photoreceptor mosaic structure to clinical findings in Stargardt disease. Transl Vis Sci Technol 2016; 5: 6
  • 57 Miyata M, Ooto S, Ogino K. et al. Evaluation of photoreceptors in Bietti crystalline dystrophy with CYP4V2 mutations using adaptive optics scanning laser ophthalmoscopy. Am J Ophthalmol 2016; 161: 196-205.e1
  • 58 Wilk MA, McAllister JT, Cooper RF. et al. Relationship between foveal cone specialization and pit morphology in albinism. Invest Ophthalmol Vis Sci 2014; 55: 4186-4198
  • 59 Godara P, Cooper RF, Sergouniotis PI. et al. Assessing retinal structure in complete congenital stationary night blindness and Oguchi disease. Am J Ophthalmol 2012; 154: 987-1001
  • 60 Baraas RC, Carroll J, Gunther KL. et al. Adaptive optics retinal imaging reveals S-cone dystrophy in tritan color-vision deficiency. J Opt Soc Am A Opt Image Sci Vis 2007; 24: 1438-1447
  • 61 Bowne SJ, Sullivan LS, Avery CE. et al. Mutations in the small nuclear riboprotein 200 kDa gene (SNRNP200) cause 1.6 % of autosomal dominant retinitis pigmentosa. Mol Vis 2013; 19: 2407-2417
  • 62 Jacob J, Krivosic V, Paques M. et al. Cone density loss on adaptive optics in early macular telangiectasia type 2. Retina 2016; 36: 545-551
  • 63 Wang Q, Tuten WS, Lujan B. et al. Adaptive optics microperimetry and OCT images in macular telangiectasia type 2 retinal lesions show preserved function and recovery of cone visibility. Invest Ophthalmol Vis Sci 2015; 56: 778-786
  • 64 Scoles D, Flatter JA, Cooper RF. et al. Assessing photoreceptor structure associated with ellipsoid zone disruptions visualized with optical coherence tomography. Retina 2016; 36: 91-103
  • 65 Ooto S, Hangai M, Takayama K. et al. High-resolution photoreceptor imaging in idiopathic macular telangiectasia type 2 using adaptive optics scanning laser ophthalmoscopy. Invest Ophthalmol Vis Sci 2011; 52: 5541-5550
  • 66 Duncan JL, Roorda A, Navani M. et al. Identification of a novel mutation in the CDHR1 gene in a family with recessive retinal degeneration. Arch Ophthalmol 2012; 130: 1301-1308
  • 67 Patterson EJ, Wilk M, Langlo CS. et al. Cone photoreceptor structure in patients with x-linked cone dysfunction and red-green color vision deficiency. Invest Ophthalmol Vis Sci 2016; 57: 3853-3863
  • 68 Talcott KE, Ratnam K, Sundquist SM. et al. Longitudinal study of cone photoreceptors during retinal degeneration and in response to ciliary neurotrophic factor treatment. Invest Ophthalmol Vis Sci 2011; 52: 2219-2226
  • 69 Gray DC, Merigan W, Wolfing JI. et al. In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells. Opt Express 2006; 14: 7144-7158
  • 70 Roorda A, Zhang Y, Duncan JL. High-resolution in vivo imaging of the RPE mosaic in eyes with retinal disease. Invest Ophthalmol Vis Sci 2007; 48: 2297-2303
  • 71 Morgan JIW, Dubra A, Wolfe R. et al. In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic. Invest Ophthalmol Vis Sci 2009; 50: 1350-1359
  • 72 Tam J, Liu J, Dubra A. et al. In vivo imaging of the human retinal pigment epithelial mosaic using adaptive optics enhanced indocyanine green ophthalmoscopy. Invest Ophthalmol Vis Sci 2016; 57: 4376-4384
  • 73 Gocho K, Sarda V, Falah S. et al. Adaptive optics imaging of geographic atrophy. Invest Ophthalmol Vis Sci 2013; 54: 3673-3680
  • 74 Liu Z, Kocaoglu OP, Miller DT. 3D imaging of retinal pigment epithelial cells in the living human retina. Invest Ophthalmol Vis Sci 2016; 57: OCT533-OCT543
  • 75 Wood EH, Leng T, Schachar IH. et al. Multi-modal longitudinal evaluation of subthreshold laser lesions in human retina, including scanning laser ophthalmoscope-adaptive optics imaging. Ophthalmic Surg Lasers Imaging Retina 2016; 47: 268-275
  • 76 Rossi EA, Rangel-Fonseca P, Parkins K. et al. In vivo imaging of retinal pigment epithelium cells in age related macular degeneration. Biomed Opt Express 2013; 4: 2527-2539
  • 77 Syed R, Sundquist SM, Ratnam K. et al. High-resolution images of retinal structure in patients with choroideremia. Invest Ophthalmol Vis Sci 2013; 54: 950-961
  • 78 Duncan JL, Talcott KE, Ratnam K. et al. Cone structure in retinal degeneration associated with mutations in the peripherin/RDS gene. Invest Ophthalmol Vis Sci 2011; 52: 1557-1566
  • 79 Harmening WM. Adaptive Optiken in der Augenheilkunde. Ophthalmologe 2017; [im Druck]
  • 80 Yoon MK, Roorda A, Zhang Y. et al. Adaptive optics scanning laser ophthalmoscopy images in a family with the mitochondrial DNA T8993C mutation. Invest Ophthalmol Vis Sci 2009; 50: 1838-1847
  • 81 Hammer DX, Ferguson RD, Bigelow CE. et al. Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging. Opt Express 2006; 14: 3354-3367
  • 82 Sheehy CK, Tiruveedhula P, Sabesan R. et al. Active eye-tracking for an adaptive optics scanning laser ophthalmoscope. Biomed Opt Express 2015; 6: 2611-2622
  • 83 Ferguson RD, Zhong Z, Hammer DX. et al. Adaptive optics scanning laser ophthalmoscope with integrated wide-field retinal imaging and tracking. J Opt Soc Am A Opt Image Sci Vis 2010; 27: A265-A277
  • 84 Wang Q, Tuten WS, Lujan BJ. et al. Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions. Invest Ophthalmol Vis Sci 2015; 56: 778-786
  • 85 Tuten WS, Tiruveedhula P, Roorda A. Adaptive optics scanning laser ophthalmoscope-based microperimetry. Optom Vis Sci 2012; 89: 563-574
  • 86 Hofer HJ, Singer B, Williams DR. Different sensations from cones with the same photopigment. J Vis 2005; 5: 444-454
  • 87 Sincich LC, Zhang Y, Tiruveedhula P. et al. Resolving single cone inputs to visual receptive fields. Nat Neurosci 2009; 12: 967-969
  • 88 Harmening WM, Tiruveedhula P, Roorda A. et al. Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye. Biomed Opt Express 2012; 3: 2066-2077
  • 89 Sabesan R, Schmidt BP, Tuten WS. et al. The elementary representation of spatial and color vision in the human retina. Sci Adv 2016; 2: e1600797
  • 90 Tuten WS, Harmening WM, Sabesan R. et al. Psychophysical evidence for inhibitory lateral interactions between individual cones in the parafovea. Investigative Ophthalmology & Visual Science 2016; 57.12