Planta Med 2018; 84(06/07): 420-427
DOI: 10.1055/s-0043-121038
Natural Product Chemistry and Analytical Studies
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Near-infrared and Mid-infrared Spectroscopic Techniques for a Fast and Nondestructive Quality Control of Thymi herba

Cornelia K. Pezzei
1   Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innsbruck, Austria
,
Stefan A. Schönbichler
2   Bionorica Research, Innsbruck, Austria
,
Shah Hussain
1   Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innsbruck, Austria
,
Christian G. Kirchler
1   Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innsbruck, Austria
,
Verena A. Huck-Pezzei
1   Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innsbruck, Austria
,
Michael Popp
3   Bionorica SE, Neumarkt/Oberpfalz, Germany
,
Justine Krolitzek
3   Bionorica SE, Neumarkt/Oberpfalz, Germany
,
Günther K. Bonn
1   Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innsbruck, Austria
4   ADSI – Austrian Drug Screening Institute, Innsbruck, Austria
,
Christian W. Huck
1   Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innsbruck, Austria
› Author Affiliations
Further Information

Publication History

received 20 April 2017
revised 28 August 2017

accepted 03 October 2017

Publication Date:
03 November 2017 (online)

Abstract

In this study, novel near-infrared and attenuated total reflectance mid-infrared spectroscopic methods coupled with multivariate data analysis were established enabling the determination of thymol, rosmarinic acid, and the antioxidant capacity of Thymi herba. A new high-performance liquid chromatography method and UV-Vis spectroscopy were applied as reference methods. Partial least squares regressions were carried out as cross and test set validations. To reduce systematic errors, different data pretreatments, such as multiplicative scatter correction, 1st derivative, or 2nd derivative, were applied on the spectra. The performances of the two infrared spectroscopic techniques were evaluated and compared. In general, attenuated total reflectance mid-infrared spectroscopy demonstrated a slightly better predictive power (thymol: coefficient of determination = 0.93, factors = 3, ratio of performance to deviation = 3.94; rosmarinic acid: coefficient of determination = 0.91, factors = 3, ratio of performance to deviation = 3.35, antioxidant capacity: coefficient of determination = 0.87, factors = 2, ratio of performance to deviation = 2.80; test set validation) than near-infrared spectroscopy (thymol: coefficient of determination = 0.90, factors = 6, ratio of performance to deviation = 3.10; rosmarinic acid: coefficient of determination = 0.92, factors = 6, ratio of performance to deviation = 3.61, antioxidant capacity: coefficient of determination = 0.91, factors = 6, ratio of performance to deviation = 3.42; test set validation). The capability of infrared vibrational spectroscopy as a quick and simple analytical tool to replace conventional time and chemical consuming analyses for the quality control of T. herba could be demonstrated.

Supporting Information

 
  • References

  • 1 Council of Europe. European Pharmacopoeia, 8th ed 2013, English: Subscription to Main volume + Supplement 1 + Supplement 2, 8th ed. Stuttgart: Deutscher Apotheker Verlag; 2013
  • 2 Dingermann T, Hiller K, Schneider G, Zündorf I. Schneider – Arzneidrogen. Heidelberg: Springer Spektrum; 2004
  • 3 Wichtl M. Teedrogen und Phytopharmaka: Ein Handbuch für die Praxis auf wissenschaftlicher Grundlage. Stuttgart: Wissenschaftliche Verlagsgesellschaft; 2008
  • 4 Bundesministerium der Justiz und für Verbraucherschutz. Monographien der Kommission E (Phytotherapie): 00325 Thymi herba/Thymiankraut. Köln: Bundesanzeiger Verlag; BAnz. Nr. 228 vom 05.12.1984. BAnz. Nr. 50 vom 13.03.1990. BAnz. Nr. 226 vom 02.12.1992
  • 5 Hänsel R, Sticher O. Pharmakognosie – Phytopharmazie. Berlin, Heidelberg: Springer; 2007
  • 6 Didry N, Dubreuil L, Pinkas M. Activity of thymol, carvacrol, cinnamaldehyde and eugenol on oral bacteria. Pharm Acta Helv 1994; 69: 25-28
  • 7 Segvić Klarić M, Kosalec I, Mastelić J, Piecková E, Pepeljnak S. Antifungal activity of thyme (Thymus vulgaris L.) essential oil and thymol against moulds from damp dwellings. Lett Appl Microbiol 2007; 44: 36-42
  • 8 Gavliakova S, Biringerova Z, Buday T, Brozmanova M, Calkovsky V, Poliacek I, Plevkova J. Antitussive effects of nasal thymol challenges in healthy volunteers. Respir Physiol Neurobiol 2013; 187: 104-107
  • 9 Astudillo A, Hong E, Bye R, Navarrete A. Antispasmodic activity of extracts and compounds of Acalypha phleoides Cav. Phytother Res 2004; 18: 102-106
  • 10 Beer AM, Lukanov J, Sagorchev P. Effect of thymol on the spontaneous contractile activity of the smooth muscles. Phytomedicine 2007; 14: 65-69
  • 11 Braga PC, Dal Sasso M, Culici M, Bianchi T, Bordoni L, Marabini L. Anti-inflammatory activity of thymol: inhibitory effect on the release of human neutrophil elastase. Pharmacology 2006; 77: 130-136
  • 12 Suzuki Y, Furuta H. Stimulation of guinea pig neutrophil superoxide anion-producing system with thymol. Inflammation 1988; 12: 575-584
  • 13 Fujisawa S, Kadoma Y. Effect of phenolic compounds on the polymerization of methyl methacrylate. Dent Mater 1992; 8: 324-326
  • 14 Fecka I, Turek S. Determination of polyphenolic compounds in commercial herbal drugs and spices from Lamiaceae: thyme, wild thyme and sweet marjoram by chromatographic techniques. Food Chem 2008; 108: 1039-1053
  • 15 Dapkevicius A, van Beek TA, Lelyveld GP, van Veldhuizen A, de Groot A, Linssen JPH, Venskutonis R. Isolation and structure elucidation of radical scavengers from Thymus vulgaris leaves. J Nat Prod 2002; 65: 892-896
  • 16 Petersen M, Simmonds MSJ. Rosmarinic acid. Phytochemistry 2003; 62: 121-125
  • 17 Braidy N, Matin A, Rossi F, Chinain M, Laurent D, Guillemin GJ. Neuroprotective effects of rosmarinic acid on ciguatoxin in primary human neurons. Neurotox Res 2014; 25: 226-234
  • 18 van Kessel KP, Kalter ES, Verhoef J. Rosmarinic acid inhibits external oxidative effects of human polymorphonuclear granulocytes. Agents Actions 1986; 17: 375-376
  • 19 Prakash D, Suri S, Upadhyay G, Singh BN. Total phenol, antioxidant and free radical scavenging activities of some medicinal plants. Int J Food Sci Nutr 2007; 58: 18-28
  • 20 Chalas J, Claise C, Edeas M, Messaoudi C, Vergnes L, Abella A, Lindenbaum A. Effect of ethyl esterification of phenolic acids on low-density lipoprotein oxidation. Biomed Pharmacother 2001; 55: 54-60
  • 21 Rice-Evans C, Miller N, Paganga G. Antioxidant properties of phenolic compounds. Trends Plant Sci 1997; 2: 152-159
  • 22 Tournaire C, Croux S, Maurette MT, Beck I, Hocquaux M, Braun AM, Oliveros E. Antioxidant activity of flavonoids: efficiency of singlet oxygen (1 delta g) quenching. J Photochem Photobiol B 1993; 19: 205-215
  • 23 Abe J, Berk BC. Reactive oxygen species as mediators of signal transduction in cardiovascular disease. Trends Cardiovasc Med 1998; 8: 59-64
  • 24 Schumacker PT. Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell 2006; 10: 175-176
  • 25 Matés JM, Pérez-Gómez C, Núñez de Castro I. Antioxidant enzymes and human diseases. Clin Biochem 1999; 32: 595-603
  • 26 Lee SJ, Umano K, Shibamoto T, Lee KG. Identification of volatile components in basil (Ocimum basilicum L.) and thyme leaves (Thymus vulgaris L.) and their antioxidant properties. Food Chem 2005; 91: 131-137
  • 27 Proestos C, Chorianopoulos N, Nychas GJ, Komaitis M. RP-HPLC analysis of the phenolic compounds of plant extracts. investigation of their antioxidant capacity and antimicrobial activity. J Agric Food Chem 2005; 53: 1190-1195
  • 28 Shan B, Cai YZ, Sun M, Corke H. Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. J Agric Food Chem 2005; 53: 7749-7759
  • 29 Zheng W, Wang SY. Antioxidant activity and phenolic compounds in selected herbs. J Agric Food Chem 2001; 49: 5165-5170
  • 30 Schönbichler SA, Bittner LKH, Pallua JD, Popp M, Abel G, Bonn GK, Huck CW. Simultaneous quantification of verbenalin and verbascoside in Verbena officinalis by ATR-IR and NIR spectroscopy. J Pharm Biomed Anal 2013; 84: 97-102
  • 31 Clara D, Pezzei CK, Schönbichler SA, Popp M, Krolitzek J, Bonn GK, Huck CW. Comparison of near-infrared diffuse reflectance (NIR) and attenuated-total-reflectance mid-infrared (ATR-IR) spectroscopic determination of the antioxidant capacity of Sambuci flos with classic wet chemical methods (assays). Anal Methods 2016; 8: 97-104
  • 32 Schönbichler SA, Falser GFJ, Hussain S, Bittner LK, Abel G, Popp M, Bonn GK, Huck CW. Comparison of NIR and ATR-IR spectroscopy for the determination of the antioxidant capacity of Primulae flos cum calycibus. Anal Methods 2014; 6: 6343-6351
  • 33 Schulz H, Özkan G, Baranska M, Krüger H, Özcan M. Characterisation of essential oil plants from Turkey by IR and Raman spectroscopy. Vib Spectrosc 2005; 39: 249-256
  • 34 Jentzsch P, Ramos L, Ciobotă V. Handheld Raman spectroscopy for the distinction of essential oils used in the cosmetics industry. Cosmetics 2015; 2: 162-176
  • 35 Schulz H, Quilitzsch R, Krüger H. Rapid evaluation and quantitative analysis of thyme, origano and chamomile essential oils by ATR-IR and NIR spectroscopy. J Mol Struct 2003; 661 – 662: 299-306
  • 36 Schulz H, Baranska M, Belz HH, Rösch P, Strehle MA, Popp J. Chemotaxonomic characterisation of essential oil plants by vibrational spectroscopy measurements. Vib Spectrosc 2004; 35: 81-86
  • 37 Schulz H, Steuer B, Pfeffer S, Krüger H. Medicinal and spice plants. Potential of near infrared spectroscopy for supporting breeding and cultivation of medicinal and spice plants. NIR news 2002; 13: 10
  • 38 Lamaison JL, Petitjean-Freytet C, Carnat A. Medicinal Lamiaceae with antioxidant properties, a potential source of rosmarinic acid. Pharm Acta Helv 1991; 66: 185-188
  • 39 Workman J, Weyer L. Practical Guide to interpretive near-infrared Spectroscopy. Boca Raton: CRC Press; 2008
  • 40 Chalmer JM, Griffiths PR. Handbook of vibrational Spectroscopy. Chichester: John Wiley & Sons Ltd.; 2002
  • 41 Pretsch E, Bühlmann P, Badertscher M. Spektroskopische Daten zur Strukturaufklärung organischer Verbindungen. Berlin, Heidelberg: Springer; 2010
  • 42 Chang CW, Laird DA, Mausbach MJ, Hurburgh CR. Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties. Soil Sci Soc Am J 2001; 65: 480-490
  • 43 Folin O, Ciocalteu V. On tyrosine and tryptophane determinations in proteins. J Biol Chem 1927; 73: 627-650
  • 44 Singleton VL, Orthofer R, Lamuela-Raventós RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol 1999; 299: 152-178
  • 45 Huang D, Ou B, Prior RL. The chemistry behind antioxidant capacity assays. J Agric Food Chem 2005; 53: 1841-1856
  • 46 Geladi P, MacDougall D, Martens H. Linearization and scatter-correction for near-infrared reflectance spectra of meat. Appl Spectrosc 1985; 39: 491-500
  • 47 Barnes RJ, Dhanoa MS, Lister SJ. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl Spectrosc 1989; 43: 772-777
  • 48 Savitzky A, Golay MJE. Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 1964; 36: 1627-1639
  • 49 Kessler W. Multivariate Datenanalyse: für die Pharma, Bio- und Prozessanalytik. Weinheim: Wiley-VCH; 2007