Subscribe to RSS
DOI: 10.1055/s-0043-1775418
Efficient Synthesis of Benzoselenazoles and Benzothiazoles by an Ullmann Coupling of Dihalobenzenes with Acyl Iso(seleno/thio) cyanate–Malononitrile Adducts
This work was supported by Farhangian University.

Abstract
We describe a simple and efficient method for the synthesis of various benzoselenazoles and benzothiazoles by the Ullman coupling reaction of dihalobenzenes with acyl iso(seleno/thio)cyanate–malononitrile adducts in the presence of a copper catalyst with K2CO3 as a base at room temperature, without the help of additional ligands. Notable features of this protocol include the use of mild copper-catalyzed reaction conditions, simple and readily available raw materials, easy purification with the help of a solvent, and the synthesis of 17 new benzoselenazole and benzothiazole compounds.
Key words
Ullmann coupling - benzoselenazoles - benzothiazoles - acyl isoselenocyanates - acyl isothiocyanates - malononitrileSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1775418.
- Supporting Information
Publication History
Received: 15 September 2024
Accepted after revision: 17 October 2024
Article published online:
06 November 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1 Gao X, Liu J, Zuo X, Feng X, Gao Y. Molecules 2020; 25: 1675
- 2 Liao C, Kim U.-J, Kannan K. Environ. Sci. Technol. 2018; 52: 5007
- 3 Banerjee S, Payra S, Saha A. Curr. Organocatal. 2017; 4: 164
- 4 Singh MK, Tilak R, Nath G, Awasthi SK, Agarwal A. Eur. J. Med. Chem. 2013; 63: 635
- 5 Hu P, Li W, Li Y, Su Y, Zhang B, Shen L. Catal. Lett. 2024; 154: 2396
- 6 Geisler K, Kunzler A, Below H, Bulka E, Pfeiffer W.-D, Langer P. Synlett 2003; 1195
- 7 Fujiwara S.-i, Asanuma Y, Shin-ike T, Kambe N. J. Org. Chem. 2007; 72: 8087
- 8 Kaname M, Minoura M, Sashida H. Tetrahedron Lett. 2011; 52: 505
- 9 Kobayashi K, Yokoi Y. Helv. Chim. Acta 2012; 95: 761
- 10 Časar Z, Majcen-Le Marécha A, Lorcy D. New J. Chem. 2003; 27: 1622
- 11 Su T, Xie S, Li B, Yian J, Huang L, Li X. Synlett 2015; 215
- 12 Redon S, Kabri Y, Crozet MD, Vanelle P. Tetrahedron Lett. 2014; 55: 5052
- 13 Schwartz Radatz C, Rampon DS, Balaguez RA, Alves D, Schneider PH. Eur. J. Org. Chem. 2014; 6945
- 14 Volkova KD, Kovalska VB, Losytskyy MY, Bento A, Reis LV, Santos PF, Almeida P, Yarmoluk SM. J. Fluoresc. 2008; 18: 877
- 15 Conley NR, Dragulescu-Andrasi A, Rao J, Moerner WE. Angew. Chem. Int. Ed. 2012; 51: 3350
- 16 Braga AL, Rodrigues OE. D, Paixão MW, Appelt HR, Silveira CC, Bottega DP. Synthesis 2002; 2338
- 17 Rambo RS, Schneider PH. Tetrahedron: Asymmetry 2010; 21: 2254
- 18 Braga AL, Vargas F, Sehnem JA, Braga RC. J. Org. Chem. 2005; 70: 9021
- 19 Braga AL, Paixão MW, Marin G. Synlett 2005; 1675
- 20 Freudendahl DM, Shahzad SA, Wirth T. Eur. J. Org. Chem. 2009; 1649
- 21 Santos PF, Reis LV, Almeida P, Serrano JP, Oliveira AS, Vieira Ferreira LF. J. Photochem. Photobiol., A 2004; 163: 267
- 22 Reis LV, Serrano JP. C, Almeida P, Santos PF. Synlett 2002; 1617
- 23 Gandin V, Khalkar P, Braude J, Fernandes AP. Free Radical Biol. Med. 2018; 127: 80
- 24 Yadav M, Singh VP. J. Org. Chem. 2023; 88: 16934
- 25 Bogert MT, Stull A. J. Am. Chem. Soc. 1927; 49: 2011
- 26 Balaguez RA, Betin ES, Barcellos E, Lenardao EJ, Alves D, Schumacher RF. New J. Chem. 2017; 41: 1483
- 27 Freeman F. Chem. Rev. 1969; 69: 591
- 28 Lin Z, Zhang W, Wang L, Yu H, Wu C. Toxicol. Mech. Methods 2003; 13: 241
- 29 Jain AK, Sharma S, Vaidya A, Ravichandran V, Agrawal RK. Chem. Biol. Drug. Des. 2013; 81: 557
- 30 Junek H, Hamböck H. Mikrochim. Acta 1966; 54: 522
- 31 Junek H, Hamböck H, Sterk H. Monatsh. Chem. 1968; 99: 1028
- 32 Hassan SS. J. - Assoc. Off. Anal. Chem. 1981; 64: 611
- 33 Hornum M, Kongsted J, Reinholdt P. Phys. Chem. Chem. Phys. 2021; 23: 9139
- 34 Ullmann F, Sponagel P. Ber. Dtsch. Chem. Ges. 1905; 38: 2211
- 35 Evano G, Blanchard N, Toumi M. Chem. Rev. 2008; 108: 3054
- 36 Correa A, Carril M, Bolm C. Angew. Chem. Int. Ed. 2008; 47: 2880
- 37 Beletskaya IP, Ananikov VP. Chem. Rev. 2022; 122: 16110
- 38 Didehban K, Vessally E, Hosseinian A, Edjlali L, Saedi Khosroshahi E. RSC Adv. 2018; 8: 291
- 39 Zhang Y, Ngeow KC, Ying JY. Org. Lett. 2007; 9: 3495
- 40 Zhu W, Ma D. J. Org. Chem. 2005; 70: 2696
- 41 Hassan J, Sévignon M, Gozzi C, Schulz E, Lemaire M. Chem. Rev. 2002; 102: 1359
- 42 Nematpour M, Jahani M, Tabatabai SA. J. Iran. Chem. Soc. 2019; 16: 603
- 43 Yavari I, Nematpour M. Mol. Diversity 2015; 19: 703
- 44 Yavari I, Nematpour M. Helv. Chim. Acta 2014; 97: 1132
- 45 Yavari I, Nematpour M, Damghani T. Tetrahedron Lett. 2014; 55: 1323
- 46 Nematpour M. ChemistrySelect 2024; 9: e202400871
- 47 Nematpour M. Tetrahedron 2024; 163: 134145
- 48 Seyed-Talebi SM, Kazeminezhad I, Nematpour M. J. Catal. 2018; 361: 339
- 49 (3-Benzoyl-1,3-benzoselenazol-2(3H)-ylidene)malononitrile (7a); Typical Procedure A mixture of KSeCN (2; 1.5 mmol), and BzCl (1a; 1.5 mmol) in acetone (1 mL) was stirred for 10 min. The resulting acyl isoselenocyanate 5a, malononitrile (3; 1.0 mmol), and NaH (1.0 mmol) were dissolved in THF (3 mL), and the mixture was stirred for 15 min. A mixture of ortho-diiodobenzene (4a, 1.5 mmol), CuI (0.1 mmol), and K2CO3 (2.0 mmol) in THF (2 mL) was slowly added, and the resulting mixture was stirred for 4 h at r.t. until the reaction was complete [TLC (EtOAc–hexane, 1:6)]. The mixture was then diluted with CH2Cl2 (2 mL) and aq NH4Cl (3 mL), and stirred for 10 min. The layers were separated and the aqueous layer was extracted with CH2Cl2. The combined organic fractions were dried (Na2SO4) and concentrated under reduced pressure, and the residue was washed with 3:1 hexane–EtOAc to remove impurities, giving a white powder; yield: 0.30 g (85%); mp 125–127 °C. IR (KBr): 2251, 2232, 1689, 1549, 1312, 965 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.07 (t, 3 J = 7.8 Hz, 1 H, Ar), 7.18 (d, 3 J = 7.6 Hz, 1 H, Ar), 7.21 (t, 3 J = 7.6 Hz, 1 H, Ar), 7.30 (t, 3 J = 7.6 Hz, 1 H, Ar), 7.62 (t, 3 J= 7.8 Hz, Ar, 2 H), 7.73 (d, 3 J = 7.6 Hz, 1 H, Ar), 8.05 (d, 3 J = 7.8 Hz, 2 H, Ar). 13C NMR (125.7 MHz, CDCl3): δ = 70.2 (C), 115.7 (CN), 117.2 (CN), 125.1 (CH), 126.1 (CH), 127.4 (2 CH), 127.8 (CH), 128.0 (CH), 128.9 (2 CH), 129.9 (CH), 133.9 (C), 135.7 (C), 142.3 (C), 167.3 (C=O), 180.2 (C). MS (EI-MS): m/z (%) = 350 (11) [M+; C17H9N3OSe], 286 (21) [C14H9NOSe], 273 (100) [C11H4N3OSe], 245 (52) [C10H4N3Se], 105 (23) [C7H5O], 77 (64) [C3N2]. Anal. Calcd for C17H9N3OSe (350.23): C, 58.30; H, 2.59; N, 12.00. Found: C, 58.32; H, 2.54; N, 12.04.