RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett
DOI: 10.1055/s-0043-1775482
DOI: 10.1055/s-0043-1775482
letter
Supramolecular Catalysis and Molecular Switches
An Azobenzene-Bipyridinium Derivative as a Component in the Construction of Photoresponsive Pseudorotaxanes
Financial support from the European Union – Next Generation EU – Mission 4, Component 2, Investment 1.1 PRIN 2022 Projects ‘PHOCA’ (CUP B53D23012650006) and ‘COSMO’ (CUP J53D23008520006) is gratefully acknowledged.

Abstract
We describe the synthesis and characterization of a bipyridinium derivative conjugated with two azobenzene groups (Azo2Bpy2+). The design maintains the ability of the photoswitches to undergo E to Z isomerization upon irradiation to generate a mixture of EE, EZ and ZZ isomers. Moreover, Azo2Bpy2+ is able to undergo self-assembly with dibenzo[24]crown-8 ether to generate [3]-pseudorotaxanes, driven by the strong cooperative effects, for all its geometric isomers.
Key words
molecular devices - crown ethers - photochemistry - supramolecular chemistry - photoisomerizationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1775482.
- Supporting Information
Publikationsverlauf
Eingereicht: 08. März 2025
Angenommen nach Revision: 03. April 2025
Artikel online veröffentlicht:
07. Mai 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1 Molecular Switches . Feringa BL, Browne WR. Wiley-VCH; Weinheim: 2011
- 2a Baroncini M, Silvi S, Credi A. Chem. Rev. 2020; 120: 200
- 2b Kassem S, van Leeuven T, Lubbe AS, Wilson MR, Feringa BL, Leigh DA. Chem. Soc. Rev. 2017; 9: 2592
- 3 Bruns CJ, Stoddart JF. The Nature of the Mechanical Bond: From Molecules to Machines . John Wiley & Sons; Hoboken: 2017
- 4a Ding J, Zheng C, Wang L, Lu C, Zhang B, Chen Y, Li M, Zhai G, Zhuang X. J. Mat. Chem. A 2019; 7: 23337
- 4b Madasamy K, Velayutham D, Suryanaraynan V, Kathiresan M, Ho K.-C. J. Mater. Chem. C 2019; 7: 4622
- 5 Andreoni L, Groppi J, Seven Ö, Baroncini M, Credi A, Silvi S. Angew. Chem. Int. Ed. 2025; 64: e202414609
- 6 Braunschweig AB, Ronconi CM, Han J.-Y, Aricò F, Cantrill SJ, Stoddart JF, Khan SI, White AJ. P, Williams DJ. Eur. J. Org. Chem. 2006; 1857
- 7 Sakata Y, Ogura T, Akine S. Chem. Commun. 2020; 56: 8735
- 8 Baroncini M, Groppi J, Corra S, Silvi S, Credi A. Adv. Opt. Mater. 2019; 7: 1900392
- 9 Cisnetti F, Ballardini R, Credi A, Gandolfi MT, Masiero S, Negri F, Pieraccini S, Spada GP. Chem. Eur. J. 2004; 10: 2011
- 10 1,1′-Bis(3-((E)-p-tolyldiazenyl)phenyl)-[4,4′-bipyridine]-1,1'-diium Dihexafluorophosphate (EE-3) 1,1'-Bis(2,4-dinitrophenyl)-4,4′-bipyridinium dichloride (0.5 g, 0.8 mmol) and compound 2 (0.4 g, 1.8 mmol) were dissolved in EtOH (40 mL) and the solution was stirred at reflux temperature for 48 h. The solvent was removed, and the solid residue was dissolved in water (50 mL) and EtOAc (50 mL). The aqueous phase was extracted with EtOAc (3 × 50 mL). A saturated aqueous solution of ammonium hexafluorophosphate (NH4PF6) was added to the aqueous phase, which contained the chloride salt of the product, to precipitate the product as the hexafluorophosphate salt. The obtained solid was filtered and washed with water and EtOH, then dried under vacuum. The product was an orange solid obtained in 71% yield (0.5 g). 1H NMR (500 MHz, CD3CN, 298 K): δ = 9.30 (d, J = 6.5 Hz, 4 H, H5), 8.71 (d, J = 6.5 Hz, 4 H, H6), 8.31 (d, J = 8.0 Hz, 2 H, H7), 8.29 (s, 2 H, H4), 7.98 (t, J = 8.0 Hz, 2 H, H8), 7.93–7.90 (m, 6 H, H3, H9), 7.45 (d, J = 8.2 Hz, 4 H, H2), 2.47 (s, 6 H, H1). 13C NMR (125 MHz, CD3CN, 298 K): δ = 154.6, 151.6, 151.3, 146.9, 144.7, 144.1, 132.8, 131.2, 128.5, 127.7, 127.3, 124.1, 118.8, 21.6.
- 11 Porter WW, Vaid TP. J. Org. Chem. 2005; 70: 5028
- 12 Baroncini M, Silvi S, Venturi M, Credi A. Chem. Eur. J. 2010; 16: 11580