Synlett
DOI: 10.1055/s-0043-1775482
letter
Supramolecular Catalysis and Molecular Switches

An Azobenzene-Bipyridinium Derivative as a Component in the Construction of Photoresponsive Pseudorotaxanes

a   Dipartimento di Chimica Industriale ‘Toso Montanari’, Università di Bologna, via P. Gobetti 85, 40129 Bologna, Italy
,
Dalila Cafagno
b   Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
,
Alberto Credi
a   Dipartimento di Chimica Industriale ‘Toso Montanari’, Università di Bologna, via P. Gobetti 85, 40129 Bologna, Italy
,
c   Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), via P. Gobetti 101, 40129 Bologna, Italy
› Institutsangaben
Financial support from the European Union – Next Generation EU – Mission 4, Component 2, Investment 1.1 PRIN 2022 Projects ‘PHOCA’ (CUP B53D23012650006) and ‘COSMO’ (CUP J53D23008520006) is gratefully acknowledged.


Abstract

We describe the synthesis and characterization of a bipyridinium derivative conjugated with two azobenzene groups (Azo2Bpy2+). The design maintains the ability of the photoswitches to undergo E to Z isomerization upon irradiation to generate a mixture of EE, EZ and ZZ isomers. Moreover, Azo2Bpy2+ is able to undergo self-assembly with dibenzo[24]crown-8 ether to generate [3]-pseudorotaxanes, driven by the strong cooperative effects, for all its geometric isomers.

Supporting Information



Publikationsverlauf

Eingereicht: 08. März 2025

Angenommen nach Revision: 03. April 2025

Artikel online veröffentlicht:
07. Mai 2025

© 2025. Thieme. All rights reserved

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Molecular Switches . Feringa BL, Browne WR. Wiley-VCH; Weinheim: 2011
  • 3 Bruns CJ, Stoddart JF. The Nature of the Mechanical Bond: From Molecules to Machines . John Wiley & Sons; Hoboken: 2017
  • 5 Andreoni L, Groppi J, Seven Ö, Baroncini M, Credi A, Silvi S. Angew. Chem. Int. Ed. 2025; 64: e202414609
  • 6 Braunschweig AB, Ronconi CM, Han J.-Y, Aricò F, Cantrill SJ, Stoddart JF, Khan SI, White AJ. P, Williams DJ. Eur. J. Org. Chem. 2006; 1857
  • 7 Sakata Y, Ogura T, Akine S. Chem. Commun. 2020; 56: 8735
  • 8 Baroncini M, Groppi J, Corra S, Silvi S, Credi A. Adv. Opt. Mater. 2019; 7: 1900392
  • 9 Cisnetti F, Ballardini R, Credi A, Gandolfi MT, Masiero S, Negri F, Pieraccini S, Spada GP. Chem. Eur. J. 2004; 10: 2011
  • 10 1,1′-Bis(3-((E)-p-tolyldiazenyl)phenyl)-[4,4′-bipyridine]-1,1'-diium Dihexafluorophosphate (EE-3) 1,1'-Bis(2,4-dinitrophenyl)-4,4′-bipyridinium dichloride (0.5 g, 0.8 mmol) and compound 2 (0.4 g, 1.8 mmol) were dissolved in EtOH (40 mL) and the solution was stirred at reflux temperature for 48 h. The solvent was removed, and the solid residue was dissolved in water (50 mL) and EtOAc (50 mL). The aqueous phase was extracted with EtOAc (3 × 50 mL). A saturated aqueous solution of ammonium hexafluorophosphate (NH4PF6) was added to the aqueous phase, which contained the chloride salt of the product, to precipitate the product as the hexafluorophosphate salt. The obtained solid was filtered and washed with water and EtOH, then dried under vacuum. The product was an orange solid obtained in 71% yield (0.5 g). 1H NMR (500 MHz, CD3CN, 298 K): δ = 9.30 (d, J = 6.5 Hz, 4 H, H5), 8.71 (d, J = 6.5 Hz, 4 H, H6), 8.31 (d, J = 8.0 Hz, 2 H, H7), 8.29 (s, 2 H, H4), 7.98 (t, J = 8.0 Hz, 2 H, H8), 7.93–7.90 (m, 6 H, H3, H9), 7.45 (d, J = 8.2 Hz, 4 H, H2), 2.47 (s, 6 H, H1). 13C NMR (125 MHz, CD3CN, 298 K): δ = 154.6, 151.6, 151.3, 146.9, 144.7, 144.1, 132.8, 131.2, 128.5, 127.7, 127.3, 124.1, 118.8, 21.6.
  • 11 Porter WW, Vaid TP. J. Org. Chem. 2005; 70: 5028
  • 12 Baroncini M, Silvi S, Venturi M, Credi A. Chem. Eur. J. 2010; 16: 11580