Planta Med 2018; 84(11): 786-794
DOI: 10.1055/s-0044-101038
Biological and Pharmacological Activity
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Anti-glioma Efficacy and Mechanism of Action of Tripolinolate A from Tripolium pannonicum

Weiyun Chai
1   Ocean College, Zhejiang University, Zhoushan, China
,
Lu Chen
1   Ocean College, Zhejiang University, Zhoushan, China
,
Xiao-Yuan Lian
2   College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
,
Zhizhen Zhang
1   Ocean College, Zhejiang University, Zhoushan, China
› Author Affiliations
Further Information

Publication History

received 31 October 2017
revised 29 December 2017

accepted 11 January 2018

Publication Date:
25 January 2018 (online)

Abstract

Tripolinolate A as a new bioactive phenolic ester was previously isolated from a halophyte of Tripolium pannonicum. However, the in vitro and in vivo anti-glioma effects and mechanism of tripolinolate A have not been investigated. This study has demonstrated that (1) tripolinolate A inhibited the proliferation of different glioma cells with IC50 values of 7.97 to 14.02 µM and had a significant inhibitory effect on the glioma growth in U87MG xenograft nude mice, (2) tripolinolate A induced apoptosis in glioma cells by downregulating the expressions of antiapoptotic proteins and arrested glioma cell cycle at the G2/M phase by reducing the expression levels of cell cycle regulators, and (3) tripolinolate A also remarkably reduced the expression levels of several glioma metabolic enzymes and transcription factors. All data together suggested that tripolinolate A had significant in vitro and in vivo anti-glioma effects and the regulation of multiple tumor-related regulators and transcription factors might be responsible for the activities of tripolinolate A against glioma.

 
  • References

  • 1 Omuro A, DeAngelis LM. Glioblastoma and other malignant gliomas: a clinical review. JAMA 2013; 310: 1842-1850
  • 2 Ostrom QT, Gittleman H, Stetson L, Virk SM, Barnholtz-Sloan JS. Epidemiology of gliomas. Cancer Treat Res 2015; 163: 1-14
  • 3 Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352: 987-996
  • 4 Chamberlain MC. Temozolomide: therapeutic limitations in the treatment of adult high-grade gliomas. Expert Rev Neurother 2010; 10: 1537-1544
  • 5 Patil SA, Hosni-Ahmed A, Jones TS, Patil R, Pfeffer LM, Miller DD. Novel approaches to glioma drug design and drug screening. Expert Opin Drug Discov 2013; 8: 1135-1151
  • 6 Ferrara N, Hillan KJ, Novotny W. Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem Biophys Res Commun 2005; 333: 328-335
  • 7 Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA, Colman H, Chakravarti A, Pugh S, Won M, Jeraj R, Brown PD, Jaeckle KA, Schiff D, Stieber VW, Brachman DG, Werner-Wasik M, Tremont-Lukats IW, Sulman EP, Aldape KD, Curran jr. WJ, Mehta MP. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014; 370: 699-708
  • 8 Schumacher M, Kelkel M, Dicato M, Diederich M. Gold from the sea: marine compounds as inhibitors of the hallmarks of cancer. Biotechnol Adv 2011; 29: 531-547
  • 9 Petit K, Biard JF. Marine natural products and related compounds as anticancer agents: an overview of their clinical status. Anticancer Agents Med Chem 2013; 13: 603-631
  • 10 Newman DJ, Cragg GM. Marine-sourced anti-cancer and cancer pain control agents in clinical and late preclinical development. Mar Drugs 2014; 12: 255-278
  • 11 Vander Heiden MG. Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov 2011; 10: 671-684
  • 12 Galluzzi L, Kepp O, Vander Heiden MG, Kroemer G. Metabolic targets for cancer therapy. Nat Rev Drug Discov 2013; 12: 829-846
  • 13 Ru P, Williams TM, Chakravarti A, Guo DT. Tumor metabolism of malignant gliomas. Cancers (Basel) 2013; 5: 1469-1484
  • 14 Martinez-Outschoorn UE, Peiris-Pagés M, Pestell RG, Sotgia F, Lisanti MP. Cancer metabolism: a therapeutic perspective. Nat Rev Clin Oncol 2017; 14: 11-31
  • 15 Guo D, Bell EH, Chakravarti A. Lipid metabolism emerges as a promising target for malignant glioma therapy. CNS Oncol 2013; 2: 289-299
  • 16 Wolf A, Agnihotri S, Micallef J, Mukherjee J, Sabha N, Cairns R, Hawkins C, Guha A. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J Exp Med 2011; 208: 313-326
  • 17 Kessler R, Bleichert F, Eschrich K. 6-Phosphofructo-2-kinase/fructose-2, 6-bisphosphatase (PFKFB3) is up-regulated in high-grade astrocytomas. J Neurooncol 2008; 86: 257-264
  • 18 Kefas B, Comeau L, Erdle N, Montgomery E, Amos S, Purow B. Pyruvate kinase M2 is a target of the tumor-suppressive microRNA-326 and regulates the survival of glioma cells. Neuro Oncol 2010; 12: 1102-1112
  • 19 Seliger C, Leukel P, Moeckel S, Jachnik B, Lottaz C, Kreutz M, Brawanski A, Proescholdt M, Bogdahn U, Bosserhoff AK, Vollmann-Zwerenz A, Hau P. Lactate-modulated induction of THBS-1 activates transforming growth factor (TGF)-beta2 and migration of glioma cells in vitro . PLoS One 2013; 8: e78935
  • 20 Daye D, Wellen KE. Metabolic reprogramming in cancer: unraveling the role of glutamine in tumorigenesis. Semin Cell Dev Biol 2012; 23: 362-369
  • 21 Santos CR, Schulze A. Lipid metabolism in cancer. FEBS J 2012; 279: 2610-2623
  • 22 Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 2007; 7: 763-777
  • 23 Chen L, Liang Y, Song T, Anjum K, Wang W, Yu S, Huang H, Lian XY, Zhang Z. Synthesis and bioactivity of tripolinolate A from Tripolium vulgare and its analogs. Bioorg Med Chem Lett 2015; 25: 2629-2633
  • 24 Zhang Z, Chen L, Liang Y, Song T, Anjum K, Wang W, Yu S, Huang H, Lian XY. Preparation of tripolinolate A and derivative thereof and medical usage. Faming Zhuanli Shenqing CN 104825437A20150812.
  • 25 Chen L, Wang W, Song T, Xie X, Ye X, Liang Y, Huang H, Yan S, Lian XY, Zhang Z. Anti-colorectal tumor effects of tripolinolate A from Tripolium vulgare . Chin J Nat Med 2017; 15: 576-583
  • 26 Tacara O, Sriamornsak P, Dass CR. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol 2013; 65: 157-170
  • 27 Bonvini P, Zorzi E, Basso G, Rosolen A. Bortezomib-mediated 26S proteasome inhibition causes cell-cycle arrest and induces apoptosis in CD-30+ anaplastic large cell lymphoma. Leukemia 2007; 21: 838-842
  • 28 Zhang X, Li W, Wang C, Leng X, Lian S, Feng J, Li J, Wang H. Inhibition of autophagy enhances apoptosis induced by proteasome inhibitor bortezomib in human glioblastoma U87 and U251 cells. Mol Cell Biochem 2014; 385: 265-275
  • 29 Zhang Y, Zhu X, Hou K, Zhao J, Han Z, Zhang X. Mcl-1 downregulation sensitizes glioma to bortezomib-induced apoptosis. Oncol Rep 2015; 33: 2277-2284
  • 30 Mita AC, Mita MM, Nawrocki ST, Giles FJ. Survivin: key regulator of mitosis and apoptosis and novel target for cancer therapeutics. Clin Cancer Res 2008; 14: 5000-5005
  • 31 Thomas S, Quinn BA, Das SK, Dash R, Emdad L, Dasgupta S, Wang XY, Dent P, Reed JC, Pellecchia M, Sarkar D, Fisher PB. Targeting the Bcl-2 family for cancer therapy. Expert Opin Ther Targets 2013; 17: 61-75
  • 32 Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 2009; 9: 153-166
  • 33 Bao JM, He MY, Liu YW, Lu YJ, Hong YQ, Luo HH, Ren ZL, Zhao SC, Jiang Y. AGE/RAGE/Akt pathway contributes to prostate cancer cell proliferation by promoting Rb phosphorylation and degradation. Am J Cancer Res 2015; 5: 1741-1750
  • 34 Ye X, Anjum K, Song T, Wang W, Liang Y, Chen M, Huang H, Lian XY, Zhang Z. Antiproliferative cyclodepsipeptides from the marine actinomycete Streptomyces sp. P11–23B downregulating the tumor metabolic enzymes of glycolysis, glutaminolysis, and lipogenesis. Phytochemistry 2017; 135: 151-159
  • 35 Jones NP, Schulze A. Targeting cancer metabolism – aiming at a tumourʼs sweet-spot. Drug Discov Today 2012; 17: 232-241
  • 36 Dang CV, Le A, Gao P. MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res 2009; 15: 6479-6483
  • 37 Celli N, Mariani B, Dragani LK, Murzilli S, Rossi C, Rotilio DJ. Development and validation of a liquid chromatographic-tandem mass spectrometric method for the determination of caffeic acid phenethyl ester in rat plasma and urine. J Chromatogr B 2014; 810: 129-136
  • 38 Guo X, Shen L, Tong Y, Zhang J, Wu G, He Q, Yu S, Ye X, Zou L, Zhang Z, Lian XY. Antitumor activity of caffeic acid 3, 4-dihydroxyphenethyl ester and its pharmacokinetic and metabolic properties. Phytomedicine 2013; 20: 904-912
  • 39 Li B, Sedlacek M, Manoharan I, Boopathy R, Duysen EG, Masson P, Lockridge O. Butyrylcholinesterase, paraoxonase, and albumin esterase, but not carboxylesterase, are present in human plasma. Biochem Pharmacol 2005; 70: 1673-1684