Subscribe to RSS
DOI: 10.1055/s-2001-15052
Regioselective Formation of 3-Selanyl-3-siloxyoxetanes in the Paternò-Büchi Reaction of Silyl O,Se-Ketene Acetals (O,Se-SKA)
Publication History
Publication Date:
24 September 2004 (online)

Abstract
The photochemical [2+2] cycloaddition (Paternò-Büchi reaction) of silyl O,Se-ketene acetal (SKA) 2 with aromatic aldehyde 3 affords regioselectively 3-selanyl-3-siloxyoxetane 4 (trans:cis ≈ 65:35-85:15) in good to high yields under the aldehyde excitation conditions (hv > 320 nm). A 70:30 mixture of the regioisomers 4aa (trans:cis = 50:50) and 5aa (= 6a), however, is produced in the 9,10-diphenylanthracene (DPA)-sensitized photoreaction (hv > 400 nm) of 2a and 3a. A 1,4-diradical 1,4-DR is proposed for the n-π* excited aldehyde reaction, which regioselectively produces the 3-selanyloxetane 4. The regio-random formation of the oxetanes 4 and 5 (= 6) under the DPA-sensitized conditions is reasonably rationalized by the intervention of radical ion intermediate RI.
Key words
Paternò-Büchi reaction - photochemical [2+2] cycloaddition - oxetane - regioselectivity
- 1a 
             
            Hamberg M.Svensson J.Samuelsson B. Proc. Natl. Acad. Sci. U.S.A. 1975, 72: 2994
- 1b 
             
            Hoshino H.Shimizu N.Shimada N.Takita T.Takeuchi T. J. Antibiot. 1987, 40: 1077
- 1c 
             
            Nakamura H.Hasegawa S.Shimada N.Fujii A.Takita T.Yoichi IJ. J. Antibiot. 1986, 39: 1626
- 1d 
             
            Kawata Y.Takatsuta S.Ikekawa N.Murata M.Omura S. Chem. Pham. Bull. 1986, 34: 3102
- 1e 
             
            Prakash G.Falvey DE. J. Am. Chem. Soc. 1995, 117: 11375
- 1f 
             
            Huang J.-M.Yokoyama R.Yang C.-S.Fukuyama Y. Tetrahedron Lett. 2000, 41: 6111
- 2a 
             
            Schreiber SL.Hoveyda AH.Wu H. J. Am. Chem. Soc. 1983, 105: 660
- 2b 
             
            Carless HAJ. In Synthetic Organic PhotochemistryHorspool WM. Plenum Press; New York: 1984. p.425
- 2c 
             
            Porca JA.Schreiber SL. In Comprehensive Organic Synthesis Vol. 5:Trost BM. Pergamon Press; New York: 1991. p.168
- 2d 
             
            Griesbeck AG. In Organic Photochemistry and PhotobiologyHorspool WM.Song P. CRC Press; New York: 1995. p.522 and 550
- 2e 
             
            Bach T. Liebigs Ann./Recueil 1997, 1627
- 2f 
             
            Bach T. Synthesis 1998, 683
- 3a 
             
            Paternó E.Chieffi G. Gazz. Chim. Ital. 1909, 39: 341
- 3b 
             
            Büchi G.Inman CG.Lipinsky ES. J. Am. Chem. Soc. 1954, 76: 4327
- 4a 
             
            Griesbeck AG.Stadtmüller S. J. Am. Chem. Soc. 1990, 112: 1281
- 4b 
             
            Griesbeck AG.Mauder H.Stadtmüller S. Acc. Chem. Res. 1994, 27: 70
- 4c 
             
            Bach T. Tetrahedron Lett. 1991, 32: 7037
- 4d 
             
            Bach T.Jödicke K.Kather K.Fröhlich R. J. Am. Chem. Soc. 1997, 119: 2437
- 4e 
             
            Bach T.Bergmann H.Harms K. J. Am. Chem. Soc. 1999, 121: 10650
- 4f 
             
            Bach T. Tetrahedron Lett. 1999, 40: 9003
- 4g 
             
            Fleming SA.Gao JJ. Tetrahedron Lett. 1997, 38: 5407
- 4h 
             
            Shima K.Sakurai H. Bull. Chem. Soc. Jpn. 1966, 39: 1806
- 4i 
             
            Schreiber SL.Satake K. J. Am. Chem. Soc. 1983, 105: 6723
- 4j 
             
            Carless HAJ.Halfhide AFE. J. Chem. Soc., Perkin Trans. 1 1992, 1081
- 4k 
             
            Adam W.Peters K.Peters EV.Stegmann VR. J. Am. Chem. Soc. 2000, 122: 2958
- 4l 
             
            Abe M.Torii E.Nojima M. J. Org. Chem. 2000, 65: 3426
- 5a 
             
            Abe M.Ikeda M.Shirodai Y.Nojima M. Tetrahedron Lett. 1996, 37: 5901
- 5b 
             
            Abe M.Shirodai Y.Nojima M. J. Chem. Soc., Perkin Trans. 1 1998, 3253
- 5c 
             
            Abe M.Ikeda M.Nojima M. J. Chem. Soc., Perkin Trans. 1 1998, 3261
- 6 
             
            Abe M.Fujimoto K.Nojima M. J. Am. Chem. Soc. 2000, 122: 4005
- 7 The formation of oxetanes via contact ion pair has been reported, see;  
            Cruciani G.Rathjen H.-J.Margaretha P. Helv. Chim. Acta 1990, 73: 856
- 8a 
             
            Noltes JG.Van derKerk GJM. Chem. Ind. 1959, 294
- 8b 
             
            Kuivila H.-G. Synthesis 1970, 499
- 8c 
             
            Motherwell WB.Crich D. In Free Radical Chain Reactions in Organic Synthesis Academic Press; London: 1992.
- 9 
             
            Clive DLJ.Chittatu GJ.Farina V.Kiel WA.Menchen SM.Russell CG.Singh A.Wong CK.Curtis NJ. J. Am. Chem. Soc. 1980, 102: 4438
- 10 
             
            Keck GE.Enholm EJ.Yates JB.Wiley MR. Tetrahedron 1985, 41: 4079
- 13a 
             
            Lee C.Yang W.Parr RG. Phys. Rev. Sect. B 1988, 37: 785
- 13b 
             
            Becke AD. Phys. Rev. Sect. A 1988, 38: 3098
- 13c 
             
            Becke AD. J. Chem. Phys. 1993, 98: 5648
- 13d The calculations were performed within TITAN; Wavefunction, Inc., Schrödinger, Inc., 1999.
- 14 
             
            Scaiano JC.Ingold KU. J. Am. Chem. Soc. 1977, 99: 2079
- 15 The relative stability of chalcogen atom effect carbenium ion was reported in the
            order of OR > SR > SeR, see;  
            McClelland RA.Lueng M. J. Org. Chem. 1980, 45: 187
- 16 
             
            Murov SL.Carmichael J.Hug GL. In Handbook of Photochemistry Marcel Dekker; New York: 1993.Reference Ris Wihthout Link
- 18a 
             
            Tomoda S.Takeuchi Y.Nomura Y. Synthesis 1985, 212
- 18b 
             
            Kato S.Kageyama H.Takagi K.Mizoguchi K.Murai T. J. Prakt. Chem. 1990, 332: 898
- 19 
             
            Fürnster A.Csuk R.Rohrer C.Weidmann H. J. Chem. Soc., Perkin Trans. 1 1998, 1729
References and Notes
Although the irreversible oxidation peaks of 2a,b (2a: Ep ox = 1.33 V versus SCE; 2b: Ep ox = 1.29 V versus SCE in CH3CN, tetraethylammonium perchlorate as a supporting electrolyte) were observed, the signals were broad; thus, the values are not accurate for determining the oxidation potentials.
12The prolonged irradiation led to some decomposition of oxetanes.
17The fluorescence of DPA was actually quenched by p-cy-anobenzaldehyde 2a (kq = 1.90 × 1010 s-1M-1), whose rate constant was determined by Stern-Volmer plot.
 
    