Synthesis 2001(14): 2129-2137
DOI: 10.1055/s-2001-18058
PAPER
© Georg Thieme Verlag Stuttgart · New York

Expeditious Synthesis of β-Linked Glycosyl Serine Methylene Isosteres (β-C-Gly Ser) via Ethynylation of Sugar Lactones

Alessandro Dondoni*, Giandomenico Mariotti, Alberto Marra, Alessandro Massi
Dipartimento di Chimica, Laboratorio di Chimica Organica, Università di Ferrara, Via Borsari 46, 44100 Ferrara, Italy
e-Mail: adn@dns.unife.it;
Weitere Informationen

Publikationsverlauf

Received 16 July 2001
Publikationsdatum:
09. August 2004 (online)

Abstract

The addition of the lithium derivative of N-Boc 4-ethynyl-2,2-dimethyl-1,3-oxazolidine to tetra-O-benzyl-d-gluco- and galactonolactone and 2-azido-2-deoxy congeners afforded the corresponding ethynyl ketoses in fairly good yields (64-78%). Following the conversion of the ketoses into O-acetates and removal of the acetoxy group by silane reduction, the resulting β-linked ethynyl glycosides were transformed into N-Boc C-glycosyl α-aminobutyric acids by reduction of the triple bond using H2/Pd(OH)2 and oxidative cleavage of the oxazolidine ring using the Jones’ reagent. After the removal of O-benzyl groups of the carbohydrate moieties by hydrogenation and the reduction of azido to amino group, all compounds were subjected to acetylation and isolated as O- and N-acetyl derivatives. The C-glycosyl α-amino acids prepared correspond to methylene isosteres of O-glycosyl serines.

    References

  • 1 Dondoni A. Marra A. Chem. Rev.  2000,  100:  4395 
  • 2a Varki A. Glycobiology  1993,  3:  97 
  • 2b Dwek RA. Chem. Rev.  1996,  96:  683 
  • 2c Imperiali B. Acc. Chem. Res.  1997,  30:  452 
  • 2d Essentials of Glycobiology   Varki A. Cummings R. Esko J. Freeze H. Hart G. Marth J. Cold Spring Harbor Laboratory Press; New York: 1999. 
  • 3a Jansson AM. Meldal M. Bock K. J. Chem. Soc., Perkin Trans. 1  1992,  1699 
  • 3b Matsuo I. Isomura M. Ajisaka K. Tetrahedron Lett.  1999,  40:  5047 
  • 3c Seifert J. Ogawa T. Ito Y. Tetrahedron Lett.  1999,  40:  6803 
  • 4a Sjölin P. George SK. Bergquist K.-E. Roy S. Svensson A. Kihlberg J. J. Chem. Soc., Perkin Trans. 1  1999,  1731 
  • 4b Sjölin P. Kihlberg J. J. Org. Chem.  2001,  66:  2957 
  • 4c Tamura J. Nishihara J. J. Org. Chem.  2001,  66:  3074 
  • 5 For recent methods not reviewed in Ref.1 see: Nishikawa T. Ishikawa M. Wada K. Isobe M. Synlett  2001,  945 
  • 6 For addition of iodo-zinc reagent bearing an oxazolidinone ring to a glycal, see: Dorgan BJ. Jackson RFW. Synlett  1996,  859 
  • 7 For coupling of oxazolidinone ethanal with glycosyl samarium derivatives, see: Urban D. Skrydstrup T. Beau J.-M. Chem.Commun.  1998,  955 
  • 8 For coupling of oxazolidine silyl enol ether with glycosyltrichloroacetimidate, see: Dondoni A. Marra A. Massi A. J. Org. Chem.  1999,  64:  933 
  • 9 For a detailed experimental procedure and physical and spectroscopic data of some sugar lactones, see: Dondoni A. Scherrmann M.-C. J. Org. Chem.  1994,  59:  6404 
  • 10 Serrat X. Cabarrocas G. Rafel S. Ventura M. Linden A. Villalgordo JM. Tetrahedron: Asymmetry  1999,  10:  3417 
  • 11a For the synthesis of this aldehyde from serine via a reduction-oxidation procedure avoiding substantial racemization, see: Dondoni A. Perrone D. Synthesis  1997,  527 
  • 11b Dondoni A. Perrone D. Org. Synth.  1999,  77:  64 
  • 13a C-Glycoside Synthesis   Postema MHD. CRC Press; Boca Raton: 1995.  p.57-60  
  • 13b Lowary T. Meldal M. Helmboldt A. Vasella A. Bock K. J. Org. Chem.  1998,  63:  9657 
  • 14 Dondoni A. Marra A. Pasti C. Tetrahedron: Asymmetry  2000,  11:  305 
  • The anomerization free one-step transformation of the oxazolidine ring into the glycinyl group was demonstrated in several instances in earlier work from our laboratory. See:
  • 15a Dondoni A. Marra A. Massi A. Tetrahedron  1998,  54:  2827 
  • 15b Dondoni A. Marra A. Massi A. Chem. Commun.  1998,  1741 
  • 15d Dondoni A. Mariotti G. Marra A. Tetrahedron Lett.  2000,  41:  3483 
  • Dondoni A. Giovannini PP. Marra A. J. Chem. Soc., Perkin Trans. 1,  2001, in press
  • 16 Marcaurelle LA. Bertozzi CR. J. Am. Chem. Soc.  2001,  123:  1587 ; and references cited therein
  • 17a Jensen KJ. Hansen PR. Venugopal D. Barany G. J. Am. Chem. Soc.  1996,  118:  3148 
  • 17b Mitchell SA. Pratt MR. Hruby VJ. Polt R. J. Org. Chem.  2001,  66:  2327 ; and references therein
  • 18 Fuchss T. Schmidt RR. Synthesis  1998,  753 
  • 19 Armarego WLF. Perrin DD. Purification of Laboratory Chemicals   Butterworth-Heinemann; Oxford: 1996.  4th ed.
  • 20 Still WC. Kahn M. Mitra A. J. Org. Chem.  1978,  43:  2923 
12

Evidently the alkyne 1 {[α]D +90 (c = 0.7, CHCl3)} is the enantiomer of the product described in Ref. [10] which in fact was prepared starting from l-serine. Therefore the optical rotation value quoted in Ref. [10] {([α]D +88 (c = 1.05, CHCl3)} should be changed into a negative value in agreement with earlier data from the literature quoted in the same publication.