Synthesis 2002(9): 1201-1212
DOI: 10.1055/s-2002-32533
PAPER
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Photo-Crosslinkable Hole-Transport Polymers with Tunable Oxidation Potentials And Their Use In Organic Light-Emitting Diodes

Richard D. Hrehaa, Ya-Dong Zhanga, Benoit Domercqb, Nathalie Larribeaub, Joshua N. Haddockb, Bernard Kippelen*b, Seth R. Marder*a,b
Department of Chemistry, The University of Arizona, Tucson, AZ 85721, USA
Optical Sciences Center, The University of Arizona, Tucson, AZ 85721, USA
e-Mail: smarder@u.arizona.edu;
Further Information

Publication History

Received 19 March 2002
Publication Date:
28 June 2002 (online)

Abstract

A series of photo-crosslinkable arylamine-based hole-transport copolymers has been synthesized. The synthetic methodology employed allows for the redox potential of the polymer to be tuned by the incorporation of electron-donating or -withdrawing moieties. Upon exposure to ultraviolet radiation, the polymers become insoluble, as evidenced by UV/Vis absorption spectroscopy, a feature that is useful for the fabrication of multilayer organic light-emitting diodes (OLEDs) by solution processing techniques. OLEDs based on these hole-transport polymers have been fabricated and the performance of the devices has been evaluated. The photo-crosslinking process has been optimized so that it no longer adversely impacts device performance.

    References

  • 1 Adachi C. Nagai K. Tamoto N. App. Phys. Lett.  1995,  66:  2679 
  • 2 Tang CW. VanSlyke SA. App. Phys. Lett.  1987,  51:  913 
  • 3 Burroughes JH. Bradley DDC. Brown AR. Marks RN. Mackay K. Friend RH. Burna PL. Holmes AB. Nature  1990,  347:  539 
  • 4 Bellmann E. Shaheen SE. Grubbs RH. Marder SR. Kippelen B. Peyghambarian N. Chem. Mater.  1999,  11:  399 
  • 5 Burrows PE. Gu G. Bulovic V. Shen Z. Forrest SR. Thompson ME. IEEE Trans. Electron Devices  1997,  44:  1188 
  • 6 Bulovic V. Gu G. Burrows PE. Forrest SR. Thompson ME. Nature  1996,  318:  29 
  • 7 Allcock HR. Chem. Mater.  1994,  6:  1476 
  • 8 Li X.-C. Yong T.-M. Gruner J. Holmes AB. Moratti SC. Cacialli F. Friend RH. Synth. Met.  1997,  84:  437 
  • 9 Bayerl MS. Braig T. Nuyken O. Muller DC. Grob M. Meerholz K. Macromol. Rapid Commun.  1999,  20:  224 
  • 10 Li W. Wang Q. Cui J. Chou H. Shaheen SE. Jabbour GE. Anderson J. Lee P. Kippelen B. Peyghambarian N. Armstrong NR. Marks TJ. Adv. Mater.  1999,  11:  730 
  • 11 Langer EM. Liberti P. Polym. Commun.  1991,  32:  453 
  • 12 Watanabe S. Harachima S. Tsukada N. J. Polym. Sci., Polym. Chem. Ed.  1989,  22:  1033 
  • 13 Rami Reddy AV. Subramanian K. Krishnasamy V. Ravichandran J. Eur. Polym. J.  1996,  32:  916 
  • 14 Subramanian K. Krishnasamy V. Nanjundan S. Rami Reddy AV. Eur. Polym. J.  2000,  36:  2343 
  • 15 Zhang YD. Hreha RD. Marder SR. Jabbour GE. Kippelen B. Peyghambarian N. J. Mater. Chem.  2002,  12:  1703 
  • 16 Hartwig JF. Angew. Chem. Int. Ed.  1998,  37:  2046 
  • 17 Hu NX, Ong BS, Xie S, Popovic ZD, and Hor AM. inventors; Eur. Pat. Appl.  827367.  ; Chem. Abstr. 1998, 128, 223711
  • 18 Hansen HC. Olsson R. Croston G. Andersson CM. Bioorg. Med. Chem. Lett.  2000,  21:  2435 
  • 19 Hsieh CJ. Wu SH. Hsiue GH. Hsu CS. Chain S. J. Polym. Sci., Part A: Polym. Chem.  1994,  32:  1077 
  • 20 Guram AS. Buchwald SL. J. Am. Chem. Soc.  1994,  116:  7901 
  • 21 Goodbrand HB. Hu NX. J. Org. Chem.  1999,  64:  670