Planta Med 2002; 68(6): 483-486
DOI: 10.1055/s-2002-32567
Original Paper
Pharmacology
© Georg Thieme Verlag Stuttgart · New York

Effect of Caffeic Acid on Apical Transporters’ Dysfunction of Renal Proximal Tubule Cells under Oxidative Stress in vitro

Ho Jae Han1 , Soo Hyun Park1 , Kwon Moo Park1 , Byung Cheol Yoon1 , Tae Sung Kim2 , Jang Hern Lee3
  • 1College of Veterinary Medicine, Biotechnology Research Institute, Chonnam National University, Kwangju, Korea
  • 2College of Pharmacy, Chonnam National University, Kwangju, Korea
  • 3College of Veterinary Medicine & School of Agricultural Biotechnology, Seoul National University, Suwon, Korea
Further Information

Publication History

August 24, 2001

January 27, 2002

Publication Date:
01 July 2002 (online)

Abstract

The protective effect of caffeic acid (CA) against oxidative stress-induced inhibition of proximal tubule apical transporter was investigated. In the present study, 10-4 M H2O2 did not affect cell viability regardless of incubation time. However, it decreased apical transporters’ activity such as Na+/glucose cotransporter, Na+/Pi cotransporter, and Na+/H+ antiporter in the proximal tubule cells. CA (>10-6 M) prevented H2O2-induced inhibition of apical transporters. Thus, we investigated its action mechanism. CA also prevented H2O2-induced lipid peroxides formation, arachidonic acid (AA) release, and Ca2+ uptake. In conclusion, CA, in part, prevented H2O2-induced inhibition of apical transporter activity via decrease of AA release and Ca2+ uptake in primary cultured renal proximal tubule cells.

Abbreviations

AA:arachidonic acid

CA:caffeic acid

PTCs:proximal tubule cells

LPO:lipid peroxide

α-MG:α-methyl-D-glucopyranoside

References

  • 1 Haugen E, Nath K A. The involvement of oxidative stress in the progression of renal injury.  Blood Purification. 1999;  17 58-65
  • 2 Rajan P, Vedernikova I, Cos P, Berghe D V, Augustyns K, Haemers A. Synthesis and evaluation of caffeic acid amides as antioxidants.  Bioorganic and Medicinal Chemistry Letters. 2001;  22 215-7
  • 3 Samuelsen A B. The traditional uses, chemical constituents and biological activities of Plantago major L.  Journal of Ethnopharmacology.. 2000;  71 1-21
  • 4 Olthof M R, Hollman P C, Katan M B. Chlorogenic acid and caffeic acid are absorbed in humans.  Journal of Nutrition. 2001;  31 66-71
  • 5 Chung S D, Alavi N, Livingston D, Hiller S, Taub M. Characterization of primary rabbit kidney cultures that express proximal tubule functions in a hormonally defined medium.  Journal of Cellular Biology. 1982;  95 118-26
  • 6 Han H J, Park S H, Park H J, Park K M, Kang J W, Lee J H, Lee B C, Hwang W S. Effect of various estrogens on cell injury and alteration of apical transporters induced by tert-butyl hydroperoxide in renal proximal tubule cells.  Clinical Experimental Physiology Pharmacology. 2002;  29 (1&2) 60-7
  • 7 Park S H, Choi H J, Lee J H, Woo C H, Kim J H, Han H J. High glucose inhibits renal proximal tubule cell proliferation and involves PKC, oxidative stress, and TGF-β 1.  Kidney International. 2001;  59 1695-705
  • 8 Vercellotti G, Severson S P, Duane P, Moldow C F. Hydrogen peroxide alters signal transduction in human endothelial cells.  Journal of Laboratory Clinical Medicine. 1991;  117 15-24
  • 9 Sheridan A M, Fitzpatrick S, Wang C, Wheeler D C, Lieberthal W. Lipid peroxidation contributes to hydrogen peroxide induced cytotoxicity in renal epithelial cells.  Kidney International. 1996;  49 88-93
  • 10 Sakhrani L M, Behaanm B D, Walter T, Nabil M, Andrew G L, Leon G F. Transport and metabolism of glucose by renal proximal tubular cells in primary culture.  American Journal of Physiology. 1984;  246 F757-64
  • 11 Moriyama T, Kawada N, Nagatoya K, Horio M, Imai E, Hori M. Oxidative stress in tubulointerstitial injury: therapeutic potential of antioxidants towards interstitial fibrosis.  Nephrology Dialysis Transplantation. 2001;  15(S6) 47-9
  • 12 Cartron E, Carbonneau M A, Fouret G, Descomps B, Leger C L. Specific antioxidant activity of caffeoyl derivatives and other natural phenolic compounds: LDL protection against oxidation and decrease in the proinflammatory lysophosphatidylcholine production.  Journal of Natural Products. 2001;  64 480-6
  • 13 Ha H, Endou H. Lipid peroxidation in isolated rat nephron segments.  American Journal of Physiology. 1992;  263 F201-7
  • 14 Molitoris B A, Chan L K, Shapiro J I, Conger J D, Falk S A. Loss of epithelial polarity: a novel hypothesis for reduced proximal tubule Na+ transport following ischemic injury.  Journal of Membrane Biology. 1989;  107 119-27
  • 15 Nardini M, Pisu P, Gentili V, Natella F, Di Felice M, Piccolella E, Scaccini C. Effect of caffeic acid on tert-butyl hydroperoxide-induced oxidative stress in U937.  Free Radical Biology Medicine. 1998;  25 1098-105
  • 16 Nakayama T, Niimi T, Osawa T, Kawakishi S. The protective role of polyphenols in cytotoxicity of hydrogen peroxide.  Mutation Research. 1992;  281 77-80
  • 17 Shaw S, Naegeli P, Etter J D, Weidmann P. Role of intracellular signalling pathways in hydrogen peroxide-induced injury to rat glomerular mesangial cells.  Clinical Experimental Pharmacology Physiology. 1995;  22 924-33
  • 18 Golconda M S, Ueda N, Shah S V. Evidence suggesting that iron and calcium are interrelated in oxidant-induced DNA damage.  Kidney International. 1993;  44 1228-34

Dr. Ho Jae Han

Department of Veterinary Physiology

College of Veterinary Medicine

Chonnam National University

Kwangju 500-757

Korea

Phone: +82-62-530-2831

Fax: +82-62-530-2809

Email: hjhan@chonnam.ac.kr

    >