Synthesis 2002(14): 1956-1958
DOI: 10.1055/s-2002-34366
PAPER
© Georg Thieme Verlag Stuttgart · New York

Enhancement of Lewis Acidity by Ligand-Defined Metal Geometry: A Catalytic Allylation of Aldehydes with Allyltrimethylsilane

Motomu Kanaia,b, Akiyoshi Kuramochia, Masakastu Shibasaki*a
a Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
Fax: +81(3)56845206; e-Mail: mshibasa@mol.f.u-tokyo.ac.jp;
b PRESTO, The Japan Science and Technology Corporation (JST)
Further Information

Publication History

Received 9 July 2002
Publication Date:
26 September 2002 (online)

Abstract

A highly Lewis acidic aluminum complex was produced using a tridentate ligand 1. The enhanced Lewis acidity of 1-Al was attributed to the combination of a stereoelectronic effect and an electrostatic effect. Comparison with an unstrained complex 4-Al indicated that the ligand-defined sp3 geometry of the aluminum in 1-Al led to the lower LUMO level and the larger LUMO coefficient on the aluminum. 1-Al promotes a catalytic allylation of aromatic aldehydes using allyltrimethylsilane. A catalytic amount of excess ligand added to the aluminum was important for high chemical yield. The excess ligand might act as a proton source to facilitate ligand exchange on the highly Lewis acidic aluminum.

    References

  • 1 Lewis Acids in Organic Synthesis   Yamamoto H. Wiley-VCH; Weinheim: 2000. 
  • 2a Mikami K. Kotera O. Motoyama Y. Sakaguchi H. Maruta M. Synlett  1996,  171 
  • 2b Ishihara K. Kubota M. Yamamoto H. Synlett  1996,  265 
  • 2c Marx A. Yamamoto H. Angew. Chem. Int. Ed.  2000,  39:  178 
  • 2d Ishihara K. Hiraiwa Y. Yamamoto H. Synlett  2001,  1851 ; and references cited therein
  • For other interesting strategies to enhance the catalyst activity of Lewis acid complexes, see:
  • 3a Lewis acid-Brönsted acid combination: Ishihara K. Yamamoto H. J. Am. Chem. Soc.  1994,  116:  1561 
  • 3b See also: Corey EJ. Shibata T. Lee TW. J. Am. Chem. Soc.  2002,  124:  3808 
  • 3c Lewis base coordination: Denmark SE. Wynn T. J. Am. Chem. Soc.  2001,  123:  6199 
  • 3d Bimetallic system: Asao N. Kii S. Hanawa H. Maruoka K. Tetrahedron Lett.  1998,  39:  3729 
  • 3e Monomer formation using bulky phenoxy ligands: Maruoka K. Ooi T. Yamamoto H. J. Am. Chem. Soc.  1989,  111:  6431 
  • For examples of Lewis acidity enhancement by ligand-defined metal geometry, see:
  • 4a Nelson SG. Kim B.-K. Peelen TJ. J. Am. Chem. Soc.  2000,  122:  9318 
  • 4b Denmark SE. Griedel BD. Coe DM. Schnute ME. J. Am. Chem. Soc.  1994,  116:  7026 ; and references cited therein
  • 5 Fleischer EB. Gebala AE. Levey A. Tasker PA. J. Org. Chem.  1971,  36:  3042 
  • 6a

    pKa values in DMSO-CF3SO2NH2 (9.7), PhSO2NH2 (16.1), CH3OH (29.0)

  • 6b Bordwell FG. Acc. Chem. Res.  1988,  21:  456 
  • These calculations were performed using the UNIVERSAL forcefield (v. 1.02) performed on Cerius 2 4.0 (Molecular Simulations Inc.):
  • 7a Rappé AK. Casewit CJ. Colwell KS. Goddard WA. Skiff WM. J. Am. Chem. Soc.  1992,  114:  10024 
  • 7b Casewit CJ. Colwell KS. Rappé AK. J. Am. Chem. Soc.  1992,  114:  10035 
  • 7c Casewit CJ. Colwell KS. Rappé AK. J. Am. Chem. Soc.  1992,  114:  10046 ; An N-methyl analog, instead of 4, was used in these calculations for simplification
  • 11 Hamashima Y. Sawada D. Nogami H. Kanai M. Shibasaki M. Tetrahedron  2001,  57:  805 ; and references cited therein
  • 12 Side-reaction pathways mediated by a reagent-derived Lewis acidic silicon are problematic, especially in the case of catalytic enantioselective reactions: Carreira EM. In Comprehensive Asymmetric Catalysis   Vol. 3:  Jacobsen EN. Pfaltz A. Yamamoto H. Springer; Heidelberg: 1999.  p.Chap. 29 ; the possibility that the Lewis acidic silicon of 8 is the actual catalyst in the present case is unlikely due to the fact that the control catalyst 4-Al did not promote the reaction
8

The chemical yield decreased when catalyst loading of less than 5 mol% was used, <50% with 2 mol% and no reaction with 1 mol%.

9

Trifluorotoluene (CF3C6H5), toluene, and acetonitrile gave the product in 10%, 50%, and 0% yield, respectively.

10

Unfortunately, the desired allylation did not proceed from aliphatic aldehydes or α, β-unsaturated aldehydes. Cyclic trioxanes were the major products from primary and secondary alkyl substituted aldehydes. No reaction occurred from pivalaldehyde and α, β-unsaturated aldehydes.