Synthesis 2003(12): 1851-1855
DOI: 10.1055/s-2003-41030
PAPER
© Georg ThiemeVerlag Stuttgart · New York

An Enantioselective Approachto Cytotoxic Norcalamenenes via Electron-Transfer-Driven BenzylicUmpolung of an Arene Tricarbonyl Chromium Complex

Hans-Günther Schmalz*, Oliver Kiehl, Ursula Korell, Johann Lex
Institut für Organische Chemie, Universität zu Köln, Greinstrasse4, 50939 Köln, Germany
Fax: +49(221)4703064; e-Mail: Schmalz@uni-koeln.de.;
Further Information

Publication History

Received 13 June 2003
Publication Date:
13 August 2003 (online)

Abstract

An efficient enantioselective total synthesis of (R)-1-isopropenyl-6-methoxy-7-methyl-1,2,3,4-tetrahydronaphthalene,the dehydro-analog of the cytotoxic norsesquiterpene (R)-7-demethyl-2-methoxycalamenene, wasachieved in seven steps starting from 6-methoxytetralone. The synthesisexploits the specific reactivity and stereochemistry of planar chiral η6-arene-Cr(CO)3 complexes.In a key step, a Cr(CO)3-complexed benzylic anion, regioselectively generatedby means of electron- transfer-driven benzylic umpolung, is diastereoselectivelyalkylated with acetyl chloride.

    References

  • 1 Bohlmann F. Zdero C. Robinson H. King RM. Phytochemistry  1979,  18:  1675 
  • 2a Ambade NS. Desai DG. Dhanaji G. Mane RB. Indian J. Chem., Sect. B  1981,  20B:  917 
  • 2b Bohlmann F. Giencke W. Tetrahedron  1983,  39:  443 
  • 2c Kadam AJ. Baraskar UK. Mane RB. Indian J. Chem., Sect. B  2000,  39:  822 
  • 3a Tietze LF. Raschke T. Synlett  1995,  597 
  • 3b Tietze LF. Raschke T. LiebigsAnn.  1996,  1981 
  • 3c Noltemeyer M. Raschke T. Tietze LF. Acta Crystallogr.,Sect.C  1996,  C52:  2256 
  • 4a Tietze LF. Schimpf R. Angew.Chem., Int. Ed. Engl.  1994,  33:  1089 
  • 4b Tietze LF. Modi A. Eur. J. Org. Chem.  2000,  1959 
  • Recent work from this laboratory:
  • 5a Dehmel F. Lex J. Schmalz H.-G. Org.Lett.  2002,  4:  3915 
  • 5b Schwarz O. Brun R. Bats JW. Schmalz H.-G. Tetrahedron Lett.  2002,  43:  1009 
  • 5c Dehmel F. Schmalz H.-G. Org. Lett.  2001,  3:  3579 
  • 5d Hörstermann DP. Schmalz H.-G. Kociok-Köhn G. Tetrahedron  1999,  55:  6905 
  • Recent overviews:
  • 6a Schmalz H.-G. Siegel S. In TransitionMetals for Organic Synthesis   Vol. 1:  Beller M. Bolm C. Wiley-VCH; Weinheim: 1998.  p.550 
  • 6b Hegedus LS. Transition Metals inthe Synthesis of Complex Organic Molecules   2nd ed.:  UniversityScience Books; Sausalito CA: 1999.  Chap.10.
  • 6c Kündig EP. Pache SH. In Science of Synthesis (Houben-Weyl)   Vol.2:  Imamoto T. ThiemeVerlag; Stuttgart: 2003.  p.155 
  • 7 Schmalz H.-G. de Koning CB. Bernicke D. Siegel S. Pfletschinger A. Angew.Chem. Int. Ed.  1999,  38:  1620 
  • For reviews on the use of Cr(CO)3-stabilizedbenzylic anions in synthesis, see:
  • 8a Davies SG. Coote SJ. Goodfellow CL. In Advancesin Metal-Organic Chemistry   Vol. 2:  Liebeskind LS. JAI Press; London: 1989.  p.1-57  
  • 8b Davies SG. McCarthy TD. In Comprehensive Organometallic Chemistry II   Vol.12:  Abel EW. Stone FGA. Wilkinson G. Hegedus LS. Pergamon; New York: 1995.  p.979-1015  
  • This benzylic anion is best representedby a resonance structure where the charge is mainly delocalizedto the metal fragment (see Scheme 3). For a discussion of the electronic structureof Cr(CO)3 complexed benzylic anions, radicals and anions,see:
  • 9a Pfletschinger A. Dargel TK. Schmalz H.-G. Koch W. Chem. Eur. J.  1999,  5:  537 
  • 9b See also: Merlic CA. Walsh JC. Tantillo DJ. Houk KN. J. Am. Chem. Soc.  1999,  121:  3596 
  • 10 Even the more acidic arylic hydrogens ortho to the methoxy group could possiblybe protected by silylation, the benzylic deprotonation would preferentiallytake place at the methylene group meta tothe methoxy substituent because the acidity in para positionis lower for electronic and stereoelectronic reasons; see: Volk T. Bernicke D. Bats JW. Schmalz H.-G. Eur.J. Inorg. Chem.  1998,  1883 ;and references cited therein
  • 11a Corey EJ. Helal CJ. Angew.Chem. Int. Ed.  1998,  37:  1987 ;and references cited therein
  • 11b Corey EJ. Helal CJ. TetrahedronLett.  1995,  36:  9153 
  • 13 Schmalz H.-G. Millies B. Bats JW. Dürner G. Angew. Chem., Int.Ed. Engl.  1992,  31:  631 
  • 14 Johnstone RAW. Rose ME. Tetrahedron  1979,  35:  2169 
  • 15a Freeman PK. Hutchinson L. J.Org. Chem.  1980,  45:  1924 
  • 15b For the use of LiDBB inarene-Cr(CO)3 chemistry, see: Siwek MJ. Green JR. Synlett  1996,  560 
  • 16a Lombardo L. Tetrahedron Lett.  1982,  23:  4293 
  • 16b Lombardo L. Org.Synth.  1987,  65:  81 
  • 18 Seebach D. Sting AR. Hoffmann M. Angew.Chem., Int. Ed. Engl  1996,  35:  2708 
  • For previous syntheses of calamenenesusing arene chromium chemistry, see:
  • 19a Schmalz H.-G. Arnold M. Hollander J. Bats JW. Angew. Chem., Int. Ed.Engl.  1994,  33:  109 
  • 19b Schmalz H.-G. Hollander J. Arnold M. Dürner G. Tetrahedron Lett.  1993,  34:  6259 
  • 19c Uemura M. In Advances in Metal-Organic Chemistry   Vol.2:  Liebeskind LS. JAIPress; London: 1991.  p.195-245  
12

The enantiomeric excess was determinedby HPLC on a Daicel Chiralcel OJ column (hexane-i-PrOH) using a racemic sample as reference.

17

The crystallographic data (excludingstructure factors) have been deposited with the Cambridge CrystallographicData Centre as supplementary publication no. CCDC 154574. Copiesof the data may be obtained from: The Director of the CambridgeCrystallographic Centre, 12 Union Road, GB-Cambridge CB2 1EZ, UK;Fax: (+44)1223336033; e-mail: deposit@ccdc.cam.ac.uk.