Planta Med 2003; 69(7): 589-599
DOI: 10.1055/s-2003-41122
Review
© Georg Thieme Verlag Stuttgart · New York

Phytoestrogens: Recent Developments

Paul Cos1 , Tess De Bruyne1 , Sandra Apers1 , Dirk Vanden Berghe1 , Luc Pieters1 , Arnold J. Vlietinck1
  • 1Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
Further Information

Publication History

Received: December 10, 2002

Accepted: March 29, 2003

Publication Date:
04 August 2003 (online)

Abstract

Phytoestrogens are polyphenolic non-steroidal plant compounds with estrogen-like biological activity. Based on their chemical structure, phytoestrogens can be classified into four main groups, i. e., isoflavonoids, flavonoids, stilbenes, and lignans. For each group, the chemistry, dietary sources and biotransformation of the most interesting compounds will be discussed. Since phytoestrogens are structurally very similar to the estrogen 17β-estradiol, they may exhibit selective estrogen receptor modulating activities. Therefore, special attention will be given to the hormonal effects of various isoflavonoids, including genistein, daidzein, coumestrol and equol, several prenylated flavonoids, especially 8-prenylnaringenin, and the stilbene resveratrol. Furthermore, their non-hormonal effects will be discussed briefly. Finally, the latest developments on the potential protective properties of phytoestrogens and phytoestrogen-containing foods against hormone-dependent breast and prostate cancers and cardiovascular diseases, and as estrogen replacement therapy for postmenopausal women will be discussed.

References

  • 1 Bennetts H W, Underwood E J, Shier F L. A specific breeding problem of sheep on subterranean clover pastures in Western Australia.  Australian Veterinary Journal. 1946;  22 2-12
  • 2 Adams N R. Detection of the effects of phytoestrogens on sheep and cattle. J.  Animal Sci. 1995;  73 1509-15
  • 3 Baird D, Umbach D. Dietary intervention study to assess estrogenicity of dietary soy, among postmenopausal women.  Clin Endocr. 1995;  80 1685-90
  • 4 Denis L, Morton M S, Griffiths K. Diet and its preventive role in prostatic disease.  Eur Urol. 1999;  35 377-87
  • 5 Lee H P, Gourley L, Duffy S W. Dietary effects on breast-cancer risk in Singapore.  Lancet. 1991;  337 1197-200
  • 6 Potter S M, Baum J A, Teng H, Stillman R J, Shay N F, Erdman J W. Soy protein and isoflavones: their effects on blood lipids and bone density in postmenopausal women.  Am J Clin Nutr. 1998;  68 1375S-9S
  • 7 Bakhit R M, Klein B P, Essex-Sorlie D. Intake of 25 g of soybean protein with or without soybean fibre alters plasma lipids in men with elevated cholesterol concentrations.  J Nutr. 1994;  124 213-22
  • 8 Abe T. Infantile leukaemia and soybeans: a hypothesis.  Leukaemia. 1999;  13 317-20
  • 9 Diel P, Smolnikar K, Michna H. In vitro test systems for the evaluation of the estrogenic activity of natural products.  Planta Med. 1999;  65 197-203
  • 10 Murkies A L, Wilcox G, Davis S R. Phytoestrogens.  J Clin Endocr Metab. 1998;  83 297-303
  • 11 Wuttke W, Jarry H, Westphalen S, Christoffel V, Gorkow C, Seidlova-Wuttke D. Phytoestrogens: an alternative to standard hormone replacement therapy?.  Gynäkologe. 2002;  35 1007-20
  • 12 King A, Young G. Characteristics and occurrence of phenolic phytochemicals.  J Am Diet Assoc. 1999;  99 213-8
  • 13 Reinli K, Block G. Phytoestrogen content of foods.  Nutr Cancer. 1996;  26 123-48
  • 14 Wang H, Murphy P A. Isoflavone composition of American and Japanese soybeans in Iowa: effects of variety, crop year and location.  J Agr Food Chem. 1994;  42 1674-7
  • 15 Wang H, Murphy P A. Isoflavone content in commercial soybean foods.  J Agr Food Chem. 1994;  42 1666-73
  • 16 Anderson R L, Wolf W J. Compositional changes in trypsin inhibitors, phytic acid, saponins and isoflavones related to soybean processing.  J Nutr. 1995;  206 575S-86S
  • 17 Fukutake M, Takahashi M, Ishida K, Kawamura H, Sugimura T, Wakabayashi K. Quantification of genistein and genistin in soybeans and soybean products.  Food Chem Toxicol. 1996;  34 457-61
  • 18 Coward L, Smith M, Kirk M, Barnes S. Chemical modification of isoflavones in soyfoods during cooking and processing.  J Nutr. 1998;  68 1486S-91S
  • 19 Day A J, Dupont M S, Ridley S, Rhodes M, Rhodes M JC, Morgan M RA, Williamson G. Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver β-glucosidase activity.  FEBS Lett. 1998;  436 71-5
  • 20 Hur H G, Rafii F. Biotransformation of the isoflavonoids biochanin A, formononetin, and glycitein by Eubacterium limosum .  FEMS Microbiol Lett. 2000;  192 21-5
  • 21 Kelly G E, Joannou G E, Reeder A Y, Nelson C, Waring M A. The variable metabolic response to dietary isoflavones in humans.  Proc Soc Exp Biol Med. 1995;  208 40-3
  • 22 Heinonen S, Wähälä K, Adlercreutz H. Identification of isoflavone metabolites dihydrodaidzein, dihydrogenistein, 6′-OH-O-DMA, and cis-4-OH-equol in human urine by gas chromatography-mass spectroscopy using authentic reference compounds.  Anal Biochem. 1999;  274 211-9
  • 23 Coldham N G, Darby C, Hows M, King L J, Zhang A Q, Sauer M J. Comparative metabolism of genistein by human and rat gut microflora: detection and identification of the end-products of metabolism.  Xenobiotica. 2002;  32 45-62
  • 24 Oitate M, Nakaki R, Koyabu N, Takanaga H, Matsuo H, Ohtani H, Sawada Y. Transcellular transport of genistein, a soybean-derived isoflavone, across human colon carcinoma cell line (Caco-2).  Biopharm Drug Dispos. 2001;  22 23-9
  • 25 Murota K, Shimizu S, Miyamoto S, Izumi T, Obata A, Kikuchi M, Terao J. Unique uptake and transport of isoflavone aglycones by human intestinal caco-2 cells: comparison of isoflavonoids and flavonoids.  J Nutr. 2002;  132 1956-61
  • 26 Walle U K, French K L, Walgren R A, Walle T. Transport of genistein-7-glucoside by human intestinal caco-2 cells: potential role for MRP2.  Res Commun Mol Pathol Pharmacol. 1999;  103 45-56
  • 27 Andlauer W, Kolb J, Fürst P. Isoflavones from tofu are absorbed and metabolized in the isolated rat small intestine.  J Nutr. 2000;  130 3021-7
  • 28 Andlauer W, Kolb J, Stehle P, Fürst P. Absorption and metabolism of genistein in isolated rat small intestine.  J Nutr. 2000;  130 843-6
  • 29 Setchell K DR, Brown N M, Zimmer-Nechemias L, Brashear W T, Wolfe B E, Kirschner A S, Heubi J E. Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability.  Am J Clin Nutr. 2002;  76 447-53
  • 30 Lampe J W, Martini M C, Kurzer M S, Adlercreutz H, Slavin J L. Urinary lignan and isoflavonoid excretion in premenopausal women consuming flaxseed powder.  Am J Clin Nutr. 1994;  60 122-8
  • 31 Davis S R, Dalais F S, Simpson E R, Murkies A L. Phytoestrogens in health and disease.  Recent Prog Horm Res. 1999;  54 185-211
  • 32 Price K R, Fenwick G R. Naturally-occurring estrogens in foods: a review.  Food Addit Comtam. 1985;  2 73-106
  • 33 Stevens J F, Ivancic M, Hsu V L, Deinzer M L. Prenylflavonoids from Humulus lupulus .  Phytochemistry. 1997;  44 1575-85
  • 34 Stevens J F, Taylor A W, Deinzer M L. Quantitative analysis of xanthohumol and related flavonoids in hops and beer by liquid chromatography-tandem mass spectrometry.  J Chromatogr A. 1999;  832 97-107
  • 35 Milligan S R, Kalita J C, Heyerick A, Rong H, De Cooman L, De Keukeleire D. Identification of a potent phytoestrogen in hops (Humulus lupulus L.) and beer.  J Clin Endocr Metab. 1999;  83 2249-52
  • 36 Milligan S R, Kalita J C, Pocock V, Van de Kauter V, Stevens J F, Deinzer M L. et al . The endocrine activities of 8-prenylnaringenin and related hop (Humulus lupulus L.) flavonoids.  J Clin Endocr Metab. 2000;  85 4912-5
  • 37 Gester S, Metz P, Zierau O, Vollmer G. An efficient synthesis of the potent phytoestrogens 8-prenylnaringenin and 6-(1,1-dimethylallyl)naringenin by europium(III)-catalyzed Claisen rearrangement.  Tetrahedron. 2001;  57 1015-8
  • 38 Langcake P, Pryce R J. The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection and injury.  Physiol Plant Pathol. 1976;  9 77-86
  • 39 Frémont L. Biological effects of resveratrol.  Life Sci. 2000;  66 663-73
  • 40 Soleas G J, Diamandis E P, Goldberg D M. Resveratrol: a molecule whose time has come? And gone?.  Clin Biochem. 1997;  30 91-113
  • 41 Andlauer W, Kolb J, Siebert K, Furst P. Assessment of resveratrol bioavailability in the perfused small intestine of the rat.  Drug Exp Clin Res. 2000;  26 47-55
  • 42 Marier J F, Vachon P, Gritsas A, Zhang J, Moreau J P, Ducharme M P. Metabolism and disposition of resveratrol in rats: extent of absorption, glucuronidation, and enterohepatic recirculation evidenced by a linked-rat model.  J Pharmacol Exp Ther. 2002;  302 369-73
  • 43 Soleas G J, Yan J, Goldberg D M. Ultrasensitive assay for three polyphenols (catechin, quercetin, and resveratrol) and their conjugates in biological fluids utilizing gas chromatography with mass selective detection.  J Chromatogr B. 2001;  757 161-72
  • 44 Thompson L U, Robb P, Serraino M, Cheung F. Mammalian lignan production from various foods.  Nutr Cancer. 1991;  16 43-52
  • 45 Borriello S P, Setchell K DR, Axelson M, Lawson A M. Production and metabolism of lignans by the human faecal flora.  J Appl Bacteriol. 1985;  58 37-43
  • 46 Adlercreutz H, Fotsis T, Kurzer M S, Wähälä K, Mäkelä T, Hase T. Isotope dilution gas chromatographic-mass spectrometric method for the determination of unconjugated lignans and isoflavonoids in human feces, with preliminary results in omnivorous and vegetarian women.  Anal Biochem. 1995;  225 101-8
  • 47 Morton M S, Chan P S, Cheng C, Blacklock N, Matos-Ferreira A, Abranches-Monteiro L. et al . et alLignans and isoflavonoids in plasma and prostatic fluid in men: samples from Portugal, Hong Kong, and the United Kingdom.  Prostate. 1997;  32 122-8
  • 48 Hall J M, Couse J F, Korach K S. The multifaceted mechanisms of estradiol and estrogen receptor signaling.  J Biol Chem. 2001;  276 36 869-72
  • 49 Love R R, Mazess R B, Barden H S, Epstein S, Newcomb P A, Jordan V C. et al . Effects of tamoxifen on bone mineral density in postmenopausal women with breast cancer.  New Engl J Med. 1992;  326 852-6
  • 50 McDonnell D P. The molecular pharmacology of SERMs.  TEM. 1999;  10 301-11
  • 51 Tikkanen M J, Adlercreutz H. Dietary soy-derived isoflavone phytoestrogens: could they have a role in coronary heart disease prevention?.  Biochem Pharmacol. 2000;  60 1-5
  • 52 Mitlak B H, Cohen F J. Selective estrogen receptor modulators: a look ahead.  Drugs. 1999;  57 653-63
  • 53 Kuiper G, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson J A. Cloning of a novel estrogen receptor expressed in rat prostate and ovary.  Proc Natl Acad Sci USA. 1996;  93 5925-30
  • 54 Mosselman S, Polman J, Dijkema R. ERβ: identification and characterization of a novel human estrogen receptor.  FEBS Lett. 1996;  392 49-53
  • 55 Dechering K, Boersma C, Mosselman S. Estrogen receptors α and β: two receptors of a kind?.  Curr Med Chem. 2000;  7 561-76
  • 56 Kuiper G GJM, Carlsson B, Grandien K, Enmark E, Häggblad J, Nilsson S, Gustafsson J A. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors α and β.  Endocrinology. 1997;  138 863-70
  • 57 Enmark E, Pelto-Huikko M, Grandien K, Lagercrantz S, Lagercrantz J, Fried G. et al . Human estrogen receptor β-gene structure, chromosomal localization, and expression pattern.  J Clin Endocrinol Metab. 1997;  82 4258-65
  • 58 Branham W S, Dial S L, Moland C L, Hass B S, Blair R M, Fang H. et al . Phytoestrogens and mycoestrogens bind to the rat uterine estrogen receptor.  J Nutr. 2002;  132 658-64
  • 59 Kuiper G GJM, Lemmen J G, Carlsson B, Corton J C, Safe S H, van der Saag P T. et al . Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta.  Endocrinology. 1998;  139 4252-63
  • 60 Morito K, Hirose T, Kinjo J, Hirakawa T, Okawa M, Nohara T. et al . Interaction of phytoestrogens with estrogen receptors α and β.  Biol Pharm Bull. 2001;  24 351-6
  • 61 Morito K, Aomori T, Hirose T, Kinjo J, Hasegawa J, Ogawa S. et al . Interaction of phytoestrogens with estrogen receptors α and β (II).  Biol Pharm Bull. 2002;  25 48-52
  • 62 Schmitt E, Dekant W, Stopper H. Assaying the estrogenicity of phytoestrogens in cells of different estrogen sensitive tissues.  Toxicol in vitro. 2001;  15 433-9
  • 63 Diel P, Olff S, Schmidt S, Michna H. Molecular identification of potential selective estrogen receptor modulator (SERM) like properties of phytoestrogens in the human breast cancer cell line MCF-7.  Planta Med. 2001;  67 510-4
  • 64 Evans B A, Griffiths K, Morton M S. Inhibition of 5α-reductase in genital skin fibroblasts and prostate tissue by dietary lignans and isoflavonoids.  J Endocrinol. 1995;  147 295-302
  • 65 Mäkelä S, Poutanen M, Kostian M L, Lehtimaki N, Strauss L, Santti R, Vihko R. Inhibition of 17β-hydroxysteroid oxidoreductase by flavonoids in breast and prostate cancer cells.  Proc Soc Exp Biol Med. 1998;  217 310-6
  • 66 Adlercreutz H, Bannwart C, Wahala K T. Inhibition of human aromatase by mammalian lignans and isoflavonoid phytoestrogens.  J Steroid Biochem Mol Biol. 1993;  44 147-53
  • 67 Mousavi Y, Adlercreutz H. Genistein is an effective stimulator of sex hormone-binding globulin production in hepatocarcinoma human liver cancer cells and suppresses proliferation of these cells in culture.  Steroids. 1993;  58 301-4
  • 68 Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh N. et al . Genistein, a specific inhibitor of tyrosine-specific protein kinase.  J Biol Chem. 1987;  262 5592-5
  • 69 Okura A, Arakawa H, Oka H, Yoshinari T, Monden Y. Effect of genistein on topoisomerase activity and on the growth of [Val12]Ha-ras-transformed NIH 3T3 cells.  Biochem Biophys Res Commun. 1988;  157 183-9
  • 70 Fotsis T, Pepper M, Adlercreutz H, Fleischmann G, Hase T, Montesano R, Schweigerer L. Genistein, a dietary derived inhibitor of angiogenesis.  Proc Natl Acad Sci USA. 1993;  90 2690-4
  • 71 Cos P, Calomme M, Sindambiwe J B, De Bruyne T, Cimanga K, Pieters L. et al . Cytotoxicity and lipid peroxidation-inhibiting activity of flavonoids.  Planta Med. 2001;  67 515-9
  • 72 Strauss L, Santii R, Saarinen N, Streng T, Joshi S, Mäkelä S. Dietary phytoestrogens and their role in hormonally dependent disease.  Toxicol Lett. 1998;  102 - 103 349-54
  • 73 Kitaoka M, Kadokawa H, Sugano M, Ichikawa K, Taki M, Takaishi S. et al . Prenylflavonoids: A new class of non-steroidal phytoestrogens (part 1). Isolation of 8-isopentenylnaringenin and an initial study on its structure-activity relationship.  Planta Med. 1998;  64 511-5
  • 74 Zierau O, Gester S, Schwab P, Metz P, Kolba S, Wulf M, Vollmer G. Estrogenic activity of the phytoestrogens naringenin, 6-(1,1-dimethylallyl)naringenin and 8-prenylnaringenin.  Planta Med. 2002;  68 449-51
  • 75 Rong H, Boterberg T, Maubach J, Stove C, Depypere H, Van Slambrouck S. et al . 8-Prenylnaringenin, the phytoestrogen in hops and beer, up-regulates the function of the E-cadherin/catenin complex in human mammary carcinoma cells.  Eur J Cell Biol. 2001;  80 580-5
  • 76 Miranda C L, Stevens J F, Ivanov V, McCall M, Frei B, Deinzer M L, Buhler D R. Antioxidant and prooxidant actions of prenylated and nonprenylated chalcones and flavanones in vitro .  J Agric Food Chem. 2000;  48 3876-84
  • 77 Bowers J L, Tyulmenkov V V, Jernigan S C, Klinge C M. Resveratrol acts as a mixed agonist/antagonist for estrogen receptors α and β.  Endocrinology. 2000;  141 3657-67
  • 78 Basly J P, Marre-Fournier F, Le Bail J C, Habrioux G, Chulia A J. Estrogenic/antiestrogenic and scavenging properties of (E)- and (Z)-resveratrol.  Life Sci. 2000;  66 769-77
  • 79 Gehm B D, McAndrews J M, Chien P Y, Jameson J L. Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor.  Proc Natl Acad Sci USA. 1997;  94 14 138-43
  • 80 Lu R Q, Serrero G. Resveratrol, a natural product derived from grape, exhibits antiestrogenic activity and inhibits the growth of human breast cancer cells.  J Cell Physiol. 1999;  179 297-304
  • 81 Bhat K PL, Lantvit D, Christov K, Mehta R G, Moon R C, Pezzuto J M. Estrogenic and antiestrogenic properties of resveratrol in mammary tumor models.  Cancer Res. 2001;  61 7456-63
  • 82 Turner R T, Evans G L, Zhang M, Maran A, Sibonga J D. Is resveratrol an estrogen agonist in growing rats?.  Endocrinology. 1999;  140 50-4
  • 83 Pace-Asciak C R, Hahn S, Diamandis E P, Soleas G, Goldberg D M. The red wine phenolics trans-resveratrol and quercetin block human platelet aggregation and eicosanoid synthesis: implications for protection against coronary heart disease.  Clin Chim Acta. 1995;  235 207-14
  • 84 Goldberg D M, Hahn S, Parkes J G. Beyond alcohol: beverage consumption and cardiovascular mortality.  Clin Chim Acta. 1995;  237 155-87
  • 85 Tadolini B, Juliano C, Piu L, Franconi F, Cabrini L. Resveratrol inhibition of lipid peroxidation.  Free Rad Res. 2000;  33 105-14
  • 86 Pervaiz S. Resveratrol - from the bottle to the bedside?.  Leukemia Lymphoma. 2001;  40 491-8
  • 87 Hsieh T C, Juan G, Darzynkiewicz Z, Wu J M. Resveratrol increases nitric oxide synthase, induces accumulation of p53 and p21 (WAF1/CIP1), and suppresses cultured bovine pulmonary artery endothelial cell proliferation by perturbing progression through S and G2.  Cancer Res. 1999;  59 2596-601
  • 88 Shimizu H, Ross R K, Bernstein L, Yatani R, Henderson B E, Mack T M. Cancers of the prostate and breast among Japanese and white immigrants in Los Angeles county.  Brit J Cancer. 1991;  63 963-6
  • 89 Messina M, Persky V, Setchell K DR, Barnes S. Soy intake and cancer risk: a review of the in vitro and in vivo data.  Nutr Cancer. 1994;  21 113-31
  • 90 Stark A, Madar Z. Phytoestrogens: a review of recent findings.  J Pediatr Endocr Met. 2002;  15 561-72
  • 91 Adlercreutz H. Phyto-oestrogens and cancer.  Lancet Oncol,. 2002;  3 364-73
  • 92 Wu A H, Wan P, Hankin J, Tseng C C, Yu M C, Pike M C. Adolescent and adult soy intake and risk of breast cancer in Asian-Americans.  Carcinogenesis. 2002;  23 1491-6
  • 93 Shu X O, Jin F, Dai Q, Wen W Q, Potter J D, Kushi L H. et al . Soyfood intake during adolescence and subsequent risk of breast cancer among Chinese women.  Cancer Epidem Biomar. 2001;  10 483-8
  • 94 Lamartiniere C A. Protection against breast cancer with genistein: a component of soy.  Am J Clin Nutr. 2000;  71 1705S-7S
  • 95 Hulten K, Winkvist A, Lenner P, Johansson R, Adlercreutz H, Hallmans G. An incident case-referent study on plasma enterolactone and breast cancer risk.  Eur J Nutr. 2002;  41 168-76
  • 96 Jacobsen B K, Knutsen S F, Fraser G E. Does high soy milk intake reduces prostate cancer incidence? The adventist health study (United States).  Cancer Cause Control. 1998;  9 553-7
  • 97 Nagata C, Inaba S, Kawakami N, Nakizoe T, Shimizu H. Inverse association of soy product intake with serum androgen and estrogen concentrations in Japanese men.  Nutr Cancer. 2000;  36 14-8
  • 98 Bingham S A, Atkinson C, Liggins J, Bluck L, Coward A. Phyto-oestrogens: where are we now?.  Brit J Nutr. 1998;  79 393-406
  • 99 Messina M, Bennink M. Soyfoods, isoflavones and risk of colonic cancer: a review of the in vitro and in vivo data.  Bailliere Clin Endocrinol Met. 1998;  12 707-28
  • 100 Gardner C D, Newell K A, Cherin R, Haskell W L. The effect of soy protein with or without isoflavones relative to milk protein on plasma lipids in hypercholesterolemic postmenopausal women.  Am J Clin Nutr. 2001;  73 728-35
  • 101 Crouse J R, Morgan T, Terry J G, Ellis J, Vitolins M, Burke G L. A randomized trial comparing the effect of casein with that of soy protein containing varying amounts of isoflavones on plasma concentrations of lipids and lipoproteins.  Arch Intern Med. 1999;  159 2070-6
  • 102 Teede H J, Dalais F S, Kotsopoulos D, Liang Y L, Davis S, McGrath B P. Dietary soy has both beneficial and potentially adverse cardiovascular effects: a placebo-controlled study in men and postmenopausal women.  J Clin Endocrinol Metab. 2001;  86 3053-60
  • 103 Glazier M G, Bowman M . A review of the evidence for the use of phytoestrogens as a replacement for traditional estrogen replacement therapy.  Arch Intern Med. 2001;  161 1161-72
  • 104 Hodgson J M, Puddey I B, Beilin L J, Mori T A, Croft K D. Supplementation with isoflavonoid phytoestrogens does not alter serum lipid concentrations: a randomized controlled trial in humans.  J Nutr. 1998;  128 728-32
  • 105 Simons L A, von Konigsmark M, Simons J, Celermajer D S. Phytoestrogens do not influence lipoprotein levels or endothelial function in healthy, postmenopausal women.  Am J Cardiol. 2000;  85 1297-301
  • 106 Erdman J W. Soy protein and cardiovascular disease: a statement for healthcare professionals from the Nutrition Committee of the AHA.  Circulation. 2000;  102 2555-9
  • 107 Kirk E A, Sutherland P, Wang S A, Chait A, LeBoeuf R C. Dietary isoflavones reduce plasma cholesterol and atherosclerosis in C57BL/6 mice but not LDL receptor-deficient mice.  J Nutr. 1998;  128 954-9
  • 108 Agnusdei D, Crepaldi G, Isaia G, Mazzuoli G, Ortolani S, Passeri M, Bufalino L. et al . A double blind, placebo-controlled trial of ipriflavone for prevention of postmenopausal spinal bone loss.  Calcif Tissue Int. 1997;  61 142-7
  • 109 Scheiber M D, Rebar R W. Isoflavones and postmenopausal bone health: a viable alternative to estrogen therapy?.  Menopause. 1999;  6 233-41
  • 110 Alexandersen P, Toussaint A, Christiansen C, Devogelaer J P, Roux C, Fechtenbaum J, Gennari C, Reginster J Y. Ipriflavone in the treatment of postmenopausal osteoporosis: a randomized controlled trial.  JAMA. 2001;  285 1482-8
  • 111 Petilli M, Fiorelli G, Benvenuti S, Frediani U, Gori F, Brandi M L. Interactions between ipriflavone and the estrogen receptor.  Calcif Tissue Int. 1995;  56 160-5
  • 112 Lucas E A, Wild R D, Hammond L J, Khalil D A, Juma S, Daggy B P, Stoecker B J, Arjmandi B H. Flaxseed improves lipid profile without altering biomarkers of bone metabolism in postmenopausal women.  J Clin Endocrinol Metab. 2002;  87 1527-32
  • 113 Potter S M, Baum J A, Teng H Y, Stillman R J, Shay N F, Erdman J W. Soy protein and isoflavones: their effects on blood lipids and bone density in postmenopausal women.  Am J Clin Nutr. 1998;  68 1375S-9S
  • 114 Clifton-Bligh P B, Baber R J, Fulcher G R, Nery M L, Moreton T. The effect of isoflavones extracted from red clover (Rimostil) on lipid and bone metabolism.  Menopause. 2001;  8 259-65
  • 115 Scambia G, Mango D, Signorile P G, Angeli R A, Palena C, Gallo D. et al . Clinical effects of a standardized soy extract in postmenopausal women: a pilot study.  Menopause. 2000;  7 105-11
  • 116 Albertazzi P, Pansini F, Bonaccorsi G, Zanotti L, Forini E, De Aloysio D. The effect of dietary soy supplementation on hot flushes.  Obstet Gynecol. 1998;  91 6-11
  • 117 Quella S K, Loprinzi C L, Barton D L, Knost J A, Sloan J A, LaVasseur B I. et al . Evaluation of soy phytoestrogens for the treatment of hot flashes in breast cancer survivors: a north central cancer treatment group trial.  J Clin Oncol. 2000;  18 1068-74
  • 118 Duncan A M, Underhill K EW, Xu X, Lavalleur J, Phipps W R, Kurzer M S. Modest hormonal effects of soy isoflavones in postmenopausal women.  J Clin Endocrinol Metab. 1999;  84 3479-84
  • 119 Setchell K DR, Zimmer-Nechemias L, Cai J, Heubi J E. Exposure of infants to phyto-oestrogens from soy based infant formula.  Lancet. 1997;  350 23-7
  • 120 Yellay S, Naaz A, Szewczykowski M A, Sato T, Woods J A, Chang J. et al . The phytoestrogen genistein induces thymic and immune changes: a human health concern?.  PNAS. 2002;  99 7616-21

Prof. Dr. A.J. Vlietinck

Department of Pharmaceutical Sciences

University of Antwerp (UA)

Universiteitsplein 1

2610 Antwerp

Belgium

Phone: +32-3-820-2733

Fax: +32-3-820-2709

Email: arnold.vlietinck@ua.ac.be

    >