Subscribe to RSS
DOI: 10.1055/s-2003-41451
An Improved Synthesis and Structural Characterisation of 2-(4-Acetylthiophenylethynyl)-4-nitro-5-phenylethynylaniline: The Molecule Showing High Negative Differential Resistance (NDR)
Publication History
Publication Date:
10 September 2003 (online)

Abstract
2-(4-Acetylthiophenylethynyl)-4-nitro-5-phenyl-ethynyl-aniline (11) has been synthesised by an improved route, which has many advantages over the literature procedure. A key intermediate is 2-ethynyl-4-nitro-5-phenylethynylaniline (6) which is obtained from 2,5-dibromoacetanilide (5 steps, 68% overall yield). Reaction of 6 with 1-acetylthio-4-iodobenzene under Sonogashira coupling conditions affords 11 (56%). Compound 11 is characterised by CHN analysis, mass spectrometry and 1H and 13C NMR spectroscopy. The crystal structures of 2-bromo-4-nitro-5-phenylethynylaniline (4), 2-(3-hydroxy-3-methylbutynyl)-4-nitro-5-phenylethynylaniline (5) and 2-[(4-methoxybenzylthio)phenylethynyl]-4-nitro-5-phenylethynylaniline (15), have been determined, by which the regiochemical structure of 11 is also proved. The intramolecular contacts O(1)···C(7) of 2.692(2) Å in 4 and 2.677(2) Å in 15 are considerably shorter than the standard van der Waals O···C contact of 3.24 Å.
Key words
2-(4-acetylthiophenylethynyl)-4-nitro-5-phenylethynyl-aniline - negative differential resistance - molecular wires - Sonogashira coupling
-
1a
Chen J.Reed MA.Rawlett AM.Tour JM. Science 1999, 286: 1550 -
1b
Chen J.Wang W.Reed MA.Rawlett AM.Price DW.Tour JM. Appl. Phys. Lett. 2000, 77: 1224 - 2
Tour JM.Rawlett AM.Kozaki M.Yao Y.Jagessar RC.Dirk SM.Price DW.Reed MA.Zhou C.-W.Chen J.Wang W.Campbell I. Chem.-Eur. J. 2001, 7: 5118 - 3
Lamba JJS.Tour JM. J. Am. Chem. Soc. 1994, 116: 11723 - 4
Pearson DL.Tour JM. J. Org. Chem. 1997, 62: 1376 - 5
Hortholary C.Coudret C. J. Org. Chem. 2003, 68: 2167 - 6
Chen J.Reed MA. Chem. Phys. 2002, 281: 127 - 7
Moroni M.L e Moigne J.Pham TA.Bigot J.-Y. Macromolecules 1997, 30: 1964 -
8a
Sonogashira K.Tohda Y.Hagihara N. Tetrahedron Lett. 1975, 16: 4467 -
8b
Chow H.-F.Wan C.-W.Low K.-H.Yeung Y.-Y. J. Org. Chem. 2001, 66: 1910 -
8c
Fairlamb IJS.Bäuerlein PS.Marrison LR.Dickinson JM. Chem. Commun. 2003, 632 - 9
Newman MS.Karnes HA. J. Org. Chem. 1966, 31: 3980 - 10
Rowland RS.Taylor R. J. Phys. Chem. 1996, 10: 7384 - 11
Tonogaki M.Kawata T.Ohba S.Iwata Y.Shibuya I. Acta Crystallogr., Sect. B 1993, 49: 1031 -
12a
Kratochvilova I.Kocirik M.Zambova A.Mbindyo J.Mallouk TE.Mayer TS. J. Mater. Chem. 2002, 12: 2927 -
12b Review:
Robertson N.McGowan CA. Chem. Soc. Rev. 2003, 32: 96 - 13
Heck RF. Palladium Reagents in Organic Synthesis Academic Press; London: 1985. p.18 - 14
SHELXTL, Version 5.1
Bruker AXS;
Madison Wisconsin:
1997.
- 15
Vogel AI.Furniss BS.Hannaford AJ.Smith PWG.Tatchell AR. Vogel’s Textbook of Practical Organic Chemistry Longman; New York: 1989. p.920 - 16
Perjéssy A.Jones RG.McClair SL.Wilkins JM. J. Org. Chem. 1983, 48: 1266 - 17
Lumbroso H.Passerini R. Bull. Soc. Chim. Fr. 1957, 311 - 18
Kryko DT.Clausen C.Roth KM.Dontha N.Bocian DF.Kuhr WG.Lindsey JS. J. Org. Chem. 2000, 65: 7345