Abstract
Rare-earth silylamide complex, Y[N(SiMe3 )2 ]3 , was found to exhibit good catalyst activities for regio- and stereoselective dimerization
of terminal aliphatic and aromatic alkynes in the presence of amine additives. Thus,
using tertiary amine additives, particularly N(SiMe3 )3 , aliphatic terminal alkynes were efficiently converted to head-to-tail dimers. On
the other hand, only Z -head-to-head dimers were obtained in high yields from aromatic alkynes with the catalyst
and aromatic primary amines such as 4-ClC6 H4 NH2 .
Key words
dimerization - terminal alkynes - enynes - rare-earth silylamide - amine additives
References
<A NAME="RF12503SS-1A">1a </A>
Trost BM.
Science
1991,
254:
1471
<A NAME="RF12503SS-1B">1b </A>
Trost BM.
Angew. Chem. Int. Ed.
1995,
34:
259
<A NAME="RF12503SS-1C">1c </A>
Nicolaou KC.
Dai MW.
Tsay SC.
Estevez VA.
Wrasidlo W.
Science
1992,
256:
1172
<A NAME="RF12503SS-2A">2a </A> Zr:
Horton AD.
J. Chem. Soc., Chem. Commun.
1992,
185 Ru:
<A NAME="RF12503SS-2B">2b </A> See also:
Yi CS.
Liu N.
Organometallics
1996,
15:
3968
<A NAME="RF12503SS-2C">2c </A> See also:
Qu JP.
Masui D.
Ishii Y.
Hidai M.
Chem. Lett.
1998,
1003
<A NAME="RF12503SS-2D">2d </A> See also:
Bassetti M.
Marini S.
Tortorella F.
Cadierno V.
Diez J.
Gamasa MP.
Gimeno J.
J. Organomet. Chem.
2000,
593-594:
292
<A NAME="RF12503SS-2E">2e </A> Ir:
Ohmura T.
Yorozuya S.
Yamamoto Y.
Miyaura N.
Organometallics
2000,
19:
365
<A NAME="RF12503SS-2F">2f </A> Pd:
Trost BM.
Sorum MT.
Chan C.
Harms AE.
Ruhter G.
J. Am. Chem. Soc.
1997,
119:
698
<A NAME="RF12503SS-2G">2g </A> See also:
Lucking U.
Pfaltz A.
Synlett
2000,
1261
<A NAME="RF12503SS-2H">2h </A> See also:
Rubina M.
Gevorgyan V.
J. Am. Chem. Soc.
2001,
123:
11107
<A NAME="RF12503SS-3A">3a </A>
Heeres HJ.
Teuben JH.
Organometallics
1991,
10:
1980
<A NAME="RF12503SS-3B">3b </A>
Nishiura M.
Hou Z.
Wakatsuki Y.
Yamaki T.
Miyamoto T.
J. Am. Chem. Soc.
2003,
125:
1184
<A NAME="RF12503SS-4A">4a </A>
Haskel A.
Straub T.
Dash AK.
Eisen MS.
J. Am. Chem. Soc.
1999,
121:
3014
<A NAME="RF12503SS-4B">4b </A>
Wang J.
Kapon M.
Berthet JC.
Ephritikhine M.
Eisen MS.
Inorg. Chim. Acta
2002,
334:
183
<A NAME="RF12503SS-5">5 </A>
Dash AK.
Eisen MS.
Org. Lett.
2000,
2:
737
<A NAME="RF12503SS-6">6 </A>
Takaki K.
Koshoji G.
Komeyama K.
Takeda M.
Shishido T.
Kitani A.
Takehira K.
J. Org. Chem.
2003,
68:
6554
<A NAME="RF12503SS-7">7 </A>
The reaction of 2a using three equivalents of Et3 N (15 mol%) gave 3a and 4a in 21 and 7% yields, respectively, with 49% conversion.
<A NAME="RF12503SS-8A">8a </A>
Heeres HJ.
Nijhoff J.
Teuben JH.
Organometallics
1993,
12:
2609
<A NAME="RF12503SS-8B">8b </A>
Evans WJ.
Keyer RA.
Ziller JW.
Organometallics
1993,
12:
2618
<A NAME="RF12503SS-8C">8c </A>
Forsyth CM.
Nolan SP.
Stern CL.
Marks TJ.
Organometallics
1993,
12:
3618
<A NAME="RF12503SS-9">9 </A>
Bradley DC.
Ghotta JS.
J. Chem. Soc., Dalton Trans.
1973,
1021
<A NAME="RF12503SS-10A">10a </A> For 2d , 2e , and 2g :
Negishi E.
Kotora M.
Xu C.
J. Org. Chem.
1997,
62:
8957
<A NAME="RF12503SS-10B">10b </A> For 2h :
Hommes H.
Verkruijsse HD.
Brandsma L.
J. Chem. Soc., Chem. Commun.
1981,
366
<A NAME="RF12503SS-10C">10c </A> For 2f : Bromination and dehydrobromination of 4-bromostyrene, which was prepared by the
following method:
Jiang XK.
Ji GZ.
Wang D.
Z R.
J. Fluorine Chem.
1996,
79:
173
<A NAME="RF12503SS-11">11 </A>
Although the products 3c and 4h were not isolated, they were identified by comparison of 1 H NMR spectra of their reaction mixtures with literature data.
[2e ]
[f ]