Abstract
A synthetic approach to the eastern part of spiramycin, an important antibiotic compound,
is described. Introduction of the side chain was first envisaged through a Hoppe aldehyde
allylation. This reaction was carried out between an optically pure aldehyde 32 and a (±)-γ-alkoxy allyltitanium(IV) species derived from a primary γ-alkoxy allyl
(diisopropyl)carbamate. Under kinetic resolution conditions, the anti-Cram compound 35 was obtained in an 80:20 mixture, with the Cram isomer 34 , in 81% yield. Employing the optically pure (S )-γ-alkoxy allyl (diisopropyl)carbamate 36 , the corresponding (R )-γ-alkoxy allyltitanium (R )-‘Ti’-III was generated under n -BuLi·TMEDA/Ti(Oi -Pr)4 conditions, that reacted with aldehyde 32 in double stereodifferentiation to deliver the expected Cram compound 40 in 80% yield (95% de). This latter corresponded to the C1-C7 fragment of spiramycin.
Key words
spiramycin - synthesis - Hoppe allylation - secondary allyltitanium reagent - double
stereodifferentiation
References
<A NAME="RP09204SS-1A">1a </A>
Tatsuta K.
Amemiya Y.
Kanemura Y.
Takahashi H.
Kinoshita M.
Tetrahedron Lett.
1982,
23:
3375
<A NAME="RP09204SS-1B">1b </A>
Nicolaou KC.
Seitz SP.
Pavia MR.
J. Am. Chem. Soc.
1982,
104:
2031
<A NAME="RP09204SS-1C">1c </A>
Masamune S.
Lu LD.-L.
Jackson WP.
Kaiho T.
Toyoda T.
J. Am. Chem. Soc.
1982,
104:
5523
<A NAME="RP09204SS-1D">1d </A>
Grieco PA.
Inanaga J.
Lin NH.
Yanami T.
J. Am. Chem. Soc.
1982,
104:
578
<A NAME="RP09204SS-1E">1e </A>
Tanaka T.
Oikawa Y.
Hamada T.
Yonemitsu O.
Chem. Pharm. Bull.
1987,
35:
2219
<A NAME="RP09204SS-2A">2a </A>
Omura S.
Sano H.
Sunazuka T.
J. Antimicrob. Chemother.
1985,
16 Suppl. A:
1
<A NAME="RP09204SS-2B">2b </A>
Omura S.
Sano H.
Inoue M.
Yamashita K.
Okachi R.
J. Antibiot.
1983,
36:
1336
<A NAME="RP09204SS-2C">2c </A>
Tsuchiya M.
Hamada H.
Takeuchi T.
Umewaza H.
Yamamoto K.
Tanaka H.
Kiyoshima K.
Mori S.
Okamoto R.
J. Antibiot.
1982,
35:
661
<A NAME="RP09204SS-3A">3a </A>
Kirst HA. In Recent Progress in the Chemical Synthesis of Antibiotics
Lucas G.
Ohno M.
Springer Verlag;
Berlin:
1990.
p.39
<A NAME="RP09204SS-3B">3b </A> In Macrolide Antibiotics
Omura S.
Academic Press;
New York:
1984.
<A NAME="RP09204SS-3C">3c </A>
Kirst HA.
J. Antimicrob. Chemother.
1991,
28:
787
<A NAME="RP09204SS-4A">4a </A>
Berque I.
Razon P.
Le Ménez P.
Aniès C.
Pancrazi A.
Ardisson J.
Synlett
1998,
1129
<A NAME="RP09204SS-4B">4b </A>
Berque I.
Razon P.
Le Ménez P.
Pancrazi A.
Ardisson J.
Synlett
1998,
1135
<A NAME="RP09204SS-4C">4c </A>
Berque I.
Razon P.
Le Ménez P.
Mahuteau J.
Férézou JP.
Pancrazi A.
Ardisson J.
J. Org. Chem.
1999,
64:
373
<A NAME="RP09204SS-5A">5a </A>
Oddon G.
Uguen D.
Tetrahedron
1997,
38:
4407
<A NAME="RP09204SS-5B">5b </A>
Oddon G.
Uguen D.
Tetrahedron Lett.
1997,
38:
4411
<A NAME="RP09204SS-5C">5c </A>
Breuilles P.
Oddon G.
Uguen D.
Tetrahedron Lett.
1997,
38:
6607
<A NAME="RP09204SS-5D">5d </A>
Oddon G.
Uguen D.
De Cain A.
Fischer J.
Tetrahedron Lett.
1998,
39:
1149
<A NAME="RP09204SS-5E">5e </A>
Oddon G.
Uguen D.
Tetrahedron Lett.
1998,
39:
1153
<A NAME="RP09204SS-5F">5f </A>
Oddon G.
Uguen D.
Tetrahedron Lett.
1998,
39:
1157
<A NAME="RP09204SS-5G">5g </A> For the synthesis of the eastern part of spiramycin, see:
Nicolaou KC.
Pavia MR.
Seitz SP.
Tetrahedron Lett.
1979,
25:
2327
<A NAME="RP09204SS-5H">5h </A> See also:
Nicolaou KC.
Seitz SP.
Pavia MR.
J. Am. Chem. Soc.
1981,
103:
1222
<A NAME="RP09204SS-5I">5i </A> See also:
Nicolaou KC.
Pavia MR.
Seitz SP.
J. Am. Chem. Soc.
1981,
103:
1224
<A NAME="RP09204SS-5J">5j </A> See also:
Tatsuta K.
Amemiya Y.
Maniwa S.
Kinoshita M.
Tetrahedron Lett.
1980,
21:
2837
<A NAME="RP09204SS-5K">5k </A> See also:
Wuts PMG.
Bigelow SS.
J. Org. Chem.
1988,
53:
5023
<A NAME="RP09204SS-6A">6a </A>
Hoppe D.
Zschage O.
Angew. Chem., Int. Ed. Engl.
1989,
28:
69
<A NAME="RP09204SS-6B">6b </A>
Zschage O.
Hoppe D.
Tetrahedron
1992,
48:
5657
<A NAME="RP09204SS-6C">6c </A>
Zschage O.
Hoppe D.
Tetrahedron
1992,
48:
8389
<A NAME="RP09204SS-6D">6d </A>
Hoppe D.
Hense T.
Angew. Chem., Int. Ed. Engl.
1997,
36:
2282
<A NAME="RP09204SS-6E">6e </A>
Hoppe D.
Paulsen H.
Tetrahedron
1992,
48:
5667
<A NAME="RP09204SS-6F">6f </A>
Férézou J.-P.
Julia M.
Li Y.
Liu LW.
Pancrazi A.
Bull. Soc. Chim. Fr.
1995,
132:
428
<A NAME="RP09204SS-6G">6g </A>
Smith ND.
Kocienski PJ.
Street SDA.
Synthesis
1996,
652
<A NAME="RP09204SS-7">7 </A>
Barton DHR.
McCombie SW.
J. Chem. Soc., Perkin Trans. 1
1975,
1754
<A NAME="RP09204SS-8">8 </A>
Kolb HC.
VanNieuwenhze MS.
Sharpless KB.
Chem. Rev.
1994,
94:
2483
<A NAME="RP09204SS-9">9 </A>
Maier ME.
Hermann C.
Tetrahedron
2000,
56:
557
<A NAME="RP09204SS-10">10 </A>
The structure of 36 was established by comparison of its 1 H and 13 C NMR spectra with those of compound 46 . Analysis of 1 H and 13 C NMR spectra was supported by 2D experiments.
<A NAME="RP09204SS-11A">11a </A> From racemic secondary crotyl carbamate, see:
Zschage O.
Schwark J.-A.
Hoppe D.
Angew. Chem., Int. Ed. Engl.
1990,
29:
296
<A NAME="RP09204SS-11B">11b </A> See also:
Zschage O.
Schwark J.-A.
Krämer T.
Hoppe D.
Tetrahedron
1992,
48:
8377
<A NAME="RP09204SS-11C">11c </A> From optically active secondary crotyl carbamates, see:
Hoppe D.
Krämer T.
Angew. Chem., Int. Ed. Engl.
1986,
25:
160
<A NAME="RP09204SS-11D">11d </A> See also:
Hoppe D.
Krämer T.
Tetrahedron Lett.
1987,
28:
5149
<A NAME="RP09204SS-11E">11e </A> See also:
Hoppe D.
Schwark J.-R.
Synthesis
1990,
291
<A NAME="RP09204SS-11F">11f </A> See also:
Zschage O.
Hoppe D.
Tetrahedron
1992,
48:
8389
<A NAME="RP09204SS-12">12 </A>
Razon P.
Dhulut S.
Bezzenine-Lafollée S.
Courtieu J.
Pancrazi A.
Ardisson J.
Synthesis
2004, preceding paper