Synthesis 2005(4): 617-621  
DOI: 10.1055/s-2005-861787
PAPER
© Georg Thieme Verlag Stuttgart · New York

Promoting or Preventing Haloaryllithium Isomerizations: Differential Basicities and Solvent Effects as the Crucial Variables

Christophe Heiss, Thierry Rausis, Manfred Schlosser*
Institute of Chemistry and Molecular Sciences, Ecole Polytechnique Fédérale, BCh, 1015 Lausanne, Switzerland
e-Mail: manfred.schlosser@epfl.ch;
Further Information

Publication History

Received 8 October 2004
Publication Date:
18 January 2005 (eFirst)

Abstract

Deprotonation-triggered heavy halogen migrations should become a favorite tool in arene synthesis if their occurrence and outcome could be made predictable. Particularly attractive, though extremely rare, are stop-and-go situations where a first intermediate, generated by metalation, can be trapped at -100 °C, whereas at -75 °C halogen migration gives rise to an isomer. As shown now, one can conveniently produce the initial aryllithium species by halogen/metal interconversion in toluene at -100 °C, under conditions that preclude halogen migration, and unleash the isomerization process by adding tetrahydrofuran at -75 °C.

    References

  • 1 Schlosser M. Eur. J. Org. Chem.  2001,  3975 
  • 2 Schlosser M. Angew. Chem. Int. Ed.  2005,  44:  376 ; Angew. Chem. 2005, 117, 380
  • 3 Mongin F. Desponds O. Schlosser M. Tetrahedron Lett.  1996,  37:  2767 
  • 4 Mongin F. Tognini A. Cottet F. Schlosser M. Tetrahedron Lett.  1998,  39:  1749 
  • 5a Schlosser M. In Organometallics in Synthesis: A Manual   2nd ed.:  Schlosser M. Wiley; Chichester: 2002.  p.262-265  
  • 5b Schlosser M. In Organometallics in Synthesis: A Manual   2nd ed.:  Schlosser M. Wiley; Chichester: 2002.  p.47 
  • 7 Bennetau B. Mortier J. Moyroud J. Guesnet J.-L. J. Chem. Soc., Perkin Trans. 1  1995,  1265 
  • 8 Faigl F. Marzi E. Schlosser M. Chem. Eur. J.  2000,  6:  771 
  • 9 Tashiro M. Fukata G. J. Org. Chem.  1977,  42:  835 
  • 10 O’Reilly NJ. Derwin WS. Fertel LB. Lin HC. Synlett  1990,  609 
  • 11 Büker HH. Nibbering NMM. Espinosa D. Mongin F. Schlosser M. Tetrahedron Lett.  1997,  38:  8519 
  • 12 Mongin F. Marzi E. Schlosser M. Eur. J. Org. Chem.  2002,  2771 
  • 13 Kovaèeviæ B. Maksiæ ZB. Primorac M. Eur. J. Org. Chem.  2003,  3777 
  • 14 Schlosser M. Mongin F. Porwisiak J. Dmowski W. Büker HH. Nibbering NMM. Chem. Eur. J.  1998,  4:  1281 
  • 15 Castagnetti E. Schlosser M. Chem. Eur. J.  2002,  8:  799 
  • 17 Heiss C. Schlosser M. Eur. J. Org. Chem.  2003,  1569 
  • 18 Schlosser M. Marull M. Eur. J. Org. Chem.  2003,  4533 
  • 19 Shiley RH. Dickerson DR. Finger GC. J. Fluorine Chem.  1972/73,  2:  19 
  • 20 Lock G. Monatsh. Chem.  1959,  90:  680 
  • 21 Bridges AJ. Patt WC. Stickney TM. J. Org. Chem.  1990,  55:  773 
  • 22 Rausis T. Schlosser M. Eur. J. Org. Chem.  2002,  3351 
  • 23 Moyroud J. Guesnet JL. Bennetau B. Mortier J. Tetrahedron Lett.  1995,  36:  881 
  • 24 Mongin F. Schlosser M. Tetrahedron Lett.  1996,  37:  6551 
6

When treated consecutively with butyllithium and carbon dioxide in tetrahydrofuran at -75 °C, 2-chloro-1,3-difluorobenzene is converted into the 2,6-difluorobenzoic acid (70%).

16

Leroux, F.; Schlosser, M. recent results (2003) to be published.