Abstract
Deprotonation-triggered heavy halogen migrations should become a favorite tool in
arene synthesis if their occurrence and outcome could be made predictable. Particularly
attractive, though extremely rare, are stop-and-go situations where a first intermediate,
generated by metalation, can be trapped at -100 °C, whereas at -75 °C halogen migration
gives rise to an isomer. As shown now, one can conveniently produce the initial aryllithium
species by halogen/metal interconversion in toluene at -100 °C, under conditions that
preclude halogen migration, and unleash the isomerization process by adding tetrahydrofuran
at -75 °C.
Key words
basicity - halogen/metal permutation - isomerizations - organometallic intermediates
- solvent effects
References
<A NAME="RT11504SS-1">1</A>
Schlosser M.
Eur. J. Org. Chem.
2001,
3975
<A NAME="RT11504SS-2">2</A>
Schlosser M.
Angew. Chem. Int. Ed.
2005,
44:
376 ; Angew. Chem.
2005, 117, 380
<A NAME="RT11504SS-3">3</A>
Mongin F.
Desponds O.
Schlosser M.
Tetrahedron Lett.
1996,
37:
2767
<A NAME="RT11504SS-4">4</A>
Mongin F.
Tognini A.
Cottet F.
Schlosser M.
Tetrahedron Lett.
1998,
39:
1749
<A NAME="RT11504SS-5A">5a</A>
Schlosser M. In Organometallics in Synthesis: A Manual
2nd ed.:
Schlosser M.
Wiley;
Chichester:
2002.
p.262-265
<A NAME="RT11504SS-5B">5b</A>
Schlosser M. In Organometallics in Synthesis: A Manual
2nd ed.:
Schlosser M.
Wiley;
Chichester:
2002.
p.47
<A NAME="RT11504SS-6">6</A>
When treated consecutively with butyllithium and carbon dioxide in tetrahydrofuran at -75 °C, 2-chloro-1,3-difluorobenzene is
converted into the 2,6-difluorobenzoic acid (70%).
<A NAME="RT11504SS-7">7</A>
Bennetau B.
Mortier J.
Moyroud J.
Guesnet J.-L.
J. Chem. Soc., Perkin Trans. 1
1995,
1265
<A NAME="RT11504SS-8">8</A>
Faigl F.
Marzi E.
Schlosser M.
Chem. Eur. J.
2000,
6:
771
<A NAME="RT11504SS-9">9</A>
Tashiro M.
Fukata G.
J. Org. Chem.
1977,
42:
835
<A NAME="RT11504SS-10">10</A>
O’Reilly NJ.
Derwin WS.
Fertel LB.
Lin HC.
Synlett
1990,
609
<A NAME="RT11504SS-11">11</A>
Büker HH.
Nibbering NMM.
Espinosa D.
Mongin F.
Schlosser M.
Tetrahedron Lett.
1997,
38:
8519
<A NAME="RT11504SS-12">12</A>
Mongin F.
Marzi E.
Schlosser M.
Eur. J. Org. Chem.
2002,
2771
<A NAME="RT11504SS-13">13</A>
Kovaèeviæ B.
Maksiæ ZB.
Primorac M.
Eur. J. Org. Chem.
2003,
3777
<A NAME="RT11504SS-14">14</A>
Schlosser M.
Mongin F.
Porwisiak J.
Dmowski W.
Büker HH.
Nibbering NMM.
Chem. Eur. J.
1998,
4:
1281
<A NAME="RT11504SS-15">15</A>
Castagnetti E.
Schlosser M.
Chem. Eur. J.
2002,
8:
799
<A NAME="RT11504SS-16">16</A>
Leroux, F.; Schlosser, M. recent results (2003) to be published.
<A NAME="RT11504SS-17">17</A>
Heiss C.
Schlosser M.
Eur. J. Org. Chem.
2003,
1569
<A NAME="RT11504SS-18">18</A>
Schlosser M.
Marull M.
Eur. J. Org. Chem.
2003,
4533
<A NAME="RT11504SS-19">19</A>
Shiley RH.
Dickerson DR.
Finger GC.
J. Fluorine Chem.
1972/73,
2:
19
<A NAME="RT11504SS-20">20</A>
Lock G.
Monatsh. Chem.
1959,
90:
680
<A NAME="RT11504SS-21">21</A>
Bridges AJ.
Patt WC.
Stickney TM.
J. Org. Chem.
1990,
55:
773
<A NAME="RT11504SS-22">22</A>
Rausis T.
Schlosser M.
Eur. J. Org. Chem.
2002,
3351
<A NAME="RT11504SS-23">23</A>
Moyroud J.
Guesnet JL.
Bennetau B.
Mortier J.
Tetrahedron Lett.
1995,
36:
881
<A NAME="RT11504SS-24">24</A>
Mongin F.
Schlosser M.
Tetrahedron Lett.
1996,
37:
6551