Synthesis 2005(4): 551-554  
DOI: 10.1055/s-2005-861790
PAPER
© Georg Thieme Verlag Stuttgart · New York

The Reduction of Aryl Diethyl Phosphate Esters with Lithium Di-tert-butylbiphenylide Radical Anion: Aromatic Hydrocarbons via the Deoxygenation of Phenols

Michael J. Lusch*, Kevin R. Woller, Anthony M. Keller, Michael C. Turk
Department of Chemistry and Geology, Minnesota State University, Mankato, 242TN Trafton Science Center North, Mankato, MN 56001, USA
Fax: +1(507)3895625; e-Mail: michael.lusch@mnsu.edu;
Further Information

Publication History

Received 5 September 2004
Publication Date:
18 January 2005 (eFirst)

Abstract

The reduction of aryl diethyl phosphate esters by lithium 4,4′-di-tert-butylbiphenylide (LiDTBB) in THF at 0 °C is described. The reactions can be carried out either stoichiometrically (3.0 equiv LiDTBB) or with only a catalytic amount of DTBB (0.25 equiv) in the presence of lithium (2.1-3.0 equiv) and the phosphate. Products are separated from DTBB by solubility differences, by acid/base vs. neutral extraction, or by flash chromatography.

    References

  • 1a Cabri W. De Bernardinis S. Francalanci F. Penco S. J. Chem. Soc., Perkin Trans. 1  1990,  428 
  • 1b Takayama H. Kitajima M. Sakai S.-I. Heterocycles  1990,  30:  325 
  • 1c Engler TA. Reddy JP. Combrink KD. Vander Velde D. J. Org. Chem.  1990,  55:  1248 
  • 1d Peterson GA. Kunng F.-A. McCallum JS. Wulff WD. Tetrahedron Lett.  1987,  28:  1381 
  • 1e Wulff WD. McCallum JS. Kunng F.-A. J. Am. Chem. Soc.  1988,  110:  7419 
  • For summaries of deoxygenation methods see the following and references cited therein:
  • 2a Welch SC. Walters ME. J. Org. Chem.  1978,  43:  4797 
  • 2b Hussey BJ. Johnstone RAW. Entwistle ID. Tetrahedron  1982,  38:  3775 
  • 2c Ritter K. Synthesis  1993,  735 , particularly pages 756-7
  • For tosylate esters, see the following references.
  • 3a With Ra/Ni: Kenner GW. Murray MA. J. Chem. Soc.  1949,  S178 
  • 3b H2NNH2, Pd/CaCO3: Rottendorf H. Sternhell S. Aust. J. Chem.  1963,  16:  647 
  • 3c Mesylate esters. With Pd/C: Clauss K. Jensen H. Angew. Chem., Int. Ed. Engl.  1973,  12:  918 
  • 3d Potassium aryl sulfates. With Ra/Ni: Lonsky W. Traitler H. Kratzl K. J. Chem. Soc., Perkin Trans. 1  1975,  169 
  • 3e Phenyl ethers. With Ra/Ni; also a few methyl ethers: Chandler GS. Sasse WHF. Aust. J. Chem.  1963,  16:  20 
  • 3f For 1-phenyl-5-tetrazolyl ethers, see the following references. With Pd/C: Musliner WJ. Gates JW. J. Am. Chem. Soc.  1966,  88:  4271 
  • 3g Musliner WJ. Gates JW. Org. Synth.  1971,  51:  82 
  • 3h

    Catalytic transfer hydrogenation with H2NNH2·H2O or NaH2PO2 or HCO2H: Ref. 5b.

  • 3i Phenyl urethanes. With Pd/C: Weaver JD. Eisenbraun EJ. Harris LE. Chem. Ind. (London)  1973,  187 
  • 3j O-Arylisoureas. With Pd/CaCO3 or Pd/C: Vowinkel E. Wolff C. Chem. Ber.  1974,  107:  907 
  • 3k Nonaflates and other fluorosulfonates. With Pd/C: Subramanian LR. Martinez AG. Fernandez AH. Alvarez RM. Synthesis  1984,  481 
  • For fluoroalkanesulfonates, see the following references.
  • 4a With n-Bu3NH+ HCO2 -: Chen Q.-Y. He Y.-B. Yang Z.-Y. J. Chem. Soc., Chem. Commun.  1986,  1452 
  • 4b Et3NH+ HCO2 -: Chen Q.-Y. He Y.-B. Synthesis  1988,  896 
  • 4c For triflates see the following references. With Et3NH+ HCO2 -: Cacchi S. Ciattini PG. Morera E. Ortar G. Tetrahedron Lett.  1986,  27:  5541 
  • 4d

    Et3NH+ HCO2 -: Ref. 1d.

  • 4e

    NaBH4: Ref. 1e. For highly hindered, electron-rich phenols see the following references:

  • 4f Saá JM. Dopico M. Martorell G. García-Raso A. J. Org. Chem.  1990,  55:  991 
  • 4g With Ni(0)/MeOH: Sasaki K. Sakai M. Sakakibara Y. Takagi K. Chem. Lett.  1991,  2017 
  • 4h Pd-catalyzed electrochemical reduction: Chiarotto I. Carelli I. Cacchi S. Pace P. J. Electroanal. Chem.  1995,  385:  235 
  • 4i Et3SiH/Pd(OAc)2, dppp or dppf: Kotsuki H. Datta PK. Hayakawa H. Suenaga H. Synthesis  1995,  1348 
  • 5a Phenyl ethers. With Na/NH3: Sawa YK. Tsuji N. Maeda S. Tetrahedron  1961,  15:  144 
  • 5b Sawa YK. Tsuji N. Maeda S. Tetrahedron  1961,  15:  154 
  • 5c 2,4-Diaminophenyl ethers. With Na/NH3: Pirkle WH. Zabriskie JL. J. Org. Chem.  1964,  29:  3124 
  • 5d For diethyl phosphate esters see the following references. With Li/NH3; also a few mesylate esters: Kenner GW. Williams NR. J. Chem. Soc.  1955,  522 
  • 5e Li/NH3: Pelletier SW. Locke DM. J. Org. Chem.  1958,  23:  131 
  • 5f Li/NH3: Goldkamp AH. Hoehn WH. Mikulec RA. Nutting EF. Cook DL. J. Med. Chem.  1965,  8:  409 
  • 5g Li and Na/NH3: Rossi RA. Bunnett JF. J. Org. Chem.  1973,  38:  2314 
  • 5h Li/NH3: Dominianni SJ. Ryan CW. DeArmitt CW. J. Org. Chem.  1977,  42:  344 
  • 5i NaNaph and NaAnth: Shafer SJ. Closson WD. van Dijk JMF. Piepers O. Buck HM. J. Am. Chem. Soc.  1977,  99:  5118 
  • 5j

    Ti(0)/THF: Ref. 2a.

  • 5k Electrochemical reduction: Shono T. Matsumura Y. Tsubata K. Sugihara Y. J. Org. Chem.  1979,  44:  4508 
  • 6 Lusch MJ. Woller KR. Keller AM. Abstracts of Papers, 207th National Meeting of the American Chemical Society, San Diego, CA, March 13-18, 1994   American Chemical Society; Washington DC: 1994.  ORGN 63.
  • 7 Freeman PK. Hutchinson LL. J. Org. Chem.  1980,  45:  1924 
  • 8 Guijarro D. Mancheño B. Yus M. Tetrahedron  1994,  50:  8551 
  • 9a Curtis MD. Allred AL. J. Am. Chem. Soc.  1965,  87:  2554 
  • 9b Horne DA. J. Chem. Educ.  1983,  60:  246 
  • 10 The use of only 5 equivalents of CCl4 in MeCN solvent may be more useful for phenols having limited solubility in non-polar CCl4: Silverberg LJ. Dillon JL. Vemishetti P. Tetrahedron Lett.  1996,  37:  771 
  • 11a Stowell JK. Widlanski TS. Tetrahedron Lett.  1995,  36:  1825 
  • 11b Lusch MJ. Nodland MG. Abstracts of Papers, 211th National Meeting of the American Chemical Society, New Orleans, LA, March 24-28. 1996   American Chemical Society; Washington DC: 1996.  ORGN 251.
  • 12 Whitesides GM. Panek EJ. Stedronsky ER. J. Am. Chem. Soc.  1972,  94:  232 
  • 13 Still WC. Kahn M. Mitra A. J. Org. Chem.  1978,  43:  2923 
14

Ar should be used rather than N2 as the inert atmosphere because lithium reacts slowly with nitrogen to form lithium nitride, which coats the lithium surface and can slow the reaction with DTBB.