Synthesis 2005(7): 1103-1108  
DOI: 10.1055/s-2005-861866
PAPER
© Georg Thieme Verlag Stuttgart · New York

Mild Regioselective Monobromination of Activated Aromatics and Hetero­aromatics with N-Bromosuccinimide in Tetrabutylammonium Bromide

Nemai C. Ganguly*, Prithwiraj De, Sanjoy Dutta
Department of Chemistry, University of Kalyani, Kalyani- 741 235, India
Fax: +91(33)25828282; e-Mail: nemai_g@yahoo.co.in;
Further Information

Publication History

Received 19 November 2004
Publication Date:
10 March 2005 (eFirst)

Abstract

Highly regioselective nuclear bromination of activated aromatic and heteroaromatic compounds has been accomplished using N-bromosuccinimide in tetrabutylammonium bromide. Predominant para-selective monobromination of activated aromatics such as phenols and anilines, rate acceleration of bromination for moderately activated and less reactive substrates on addition of acidic montmorillonite K-10 clay, with or without microwave assistance, are the notable features of this protocol.

    References

  • 1 Taylor R. Electrophilic Aromatic Substitution   Wiley; New York: 1990. 
  • 2a Negishi E. Handbook of Organopalladium Chemistry for Organic Synthesis   Wiley; New York: 2002. 
  • 2b Metal-Catalyzed Cross-Coupling Reactions   Diederich F. Stang PJ. Wiley-VCH; Weinheim: 1998. 
  • 3 Day RA. Blake JA. Stephens CE. Synthesis  2003,  1586 ; and references cited therein
  • 4a Asakura J.-I. Robins MJ. J. Org. Chem.  1990,  55:  4928 
  • 4b Irani R.-J. Santa Lucia J. Tetrahedron Lett.  1999,  40:  8961 
  • 4c Robins MJ. In Nucleoside Analogues: Chemistry, Biology and Medical Applications, NATO Advanced Study Institute Series   Vol. 26A:  Walker RT. De Clercq E. Eckstine F. Plenum Press; New York: 1979.  p.165-192  
  • 5a Coleman RS. Madaras ML. J. Org. Chem.  1998,  63:  5700 
  • 5b Knobler RM. Hönigmann H. Edelson RL. In Psoralen DNA Photobiology   Vol. II:  CRC Press; Boco Raton, FL: 1988.  p.117-134  
  • 5c Parrish JA. Stern RS. Pathak MA. Fitzpatric TB. In The Science of Photomedicine   Plenum Press; New York: 1982.  p.595-624  
  • 5d Pescitelli G. Berova N. Xiao TL. Rozhkov VR. Larock RC. Armstrong DW. Org. Biomol. Chem.  2003,  186 ; and references cited therein
  • 5e Pardanani NH. Trivedi KN. Aust. J. Chem.  1972,  25:  1537 
  • 5f Thapliyal PC. Singh PK. Khanna RN. Synth. Commun.  1993,  23:  2821 
  • 5g Bansal V. Kanodia S. Thapliyal PC. Khanna RN. Synth. Commun.  1996,  26:  887 
  • 6a Mitchell RH. Lai Y.-H. Williams RV. J. Org. Chem.  1979,  44:  4733 
  • 6b Carreño MC. Garćia Ruano JL. Sanz G. Toledo MA. Urbano A. J. Org. Chem.  1995,  60:  5228 
  • 6c Meana A. Rodríguez JF. Sanz-Tezdedor MA. Garćia Ruano JL. Synlett  2003,  1678 
  • 6d Auerbach J. Weissmann SA. Blacklock TJ. Angeles MR. Hoogstein K. Tetrahedron Lett.  1993,  34:  931 
  • 6e Oberhauser T. J. Org. Chem.  1997,  62:  4504 
  • 6f Diwu ZJ. Lown JW. Tetrahedron  1992,  48:  45 
  • 6g Eguchi H. Kawaguchi H. Yoshinaga S. Nishida A. Nishiguchi T. Fujisaki S. Bull. Chem. Soc. Jpn.  1994,  67:  1918 
  • 6h Konishi H. Aritomi K. Okano T. Kiji J. Bull. Chem. Soc. Jpn.  1989,  62:  591 
  • 6i Smith K. James DM. Mistry A.-G. Bye MR. Faulkner DJ. Tetrahedron  1992,  48:  7479 
  • 6j Paul V. Sudalai A. Daniel J. Srinivasan KV. Tetrahedron Lett.  1994,  35:  7055 
  • 7a Fujisaki S. Eguchi H. Omura A. Okamoto A. Nishida A. Bull. Chem. Soc. Jpn.  1993,  66:  1576 
  • 7b Cañibano V. Rodríguez JF. Santos M. Sanz-Tededor MA. Carreño MC. Gonzáles G. García Ruano JL. Synthesis  2001,  2175 
  • 7c Carreño MC. García Ruano JL. Sanz G. Toledo MA. Urbano A. Synlett  1997,  1241 
  • 7d Smith K. El-Hiti GA. Hammond MEW. Bahzad D. Li Z. Siquet C. J. Chem. Soc., Perkin Trans. 1  2000,  2745 
  • 7e Breslow R. Campbell P. Bioorg. Chem.  1971,  1:  140 
  • 8a

    The boiling point of H2O (100 °C) is usually accepted as the cut-off point for melting point of room temperature ionic liquids. The melting point of TBAB is slightly above this (104 °C) but addition of substrate and reagent causes lowering of its melting point below the cut-off temperature. Therefore, it can be considerd as an in situ ionic liquid

  • 8b Welton T. Chem. Rev.  1999,  99:  2071 
  • 8c Wasserschield P. Keim W. Angew. Chem. Int. Ed.  2000,  39:  3772 
  • 8d Du Pont J. De Souza RF. Suarez PAZ. Chem. Rev.  2002,  102:  3667 
  • For some recent applications of TBAB as ionic liquid, see:
  • 9a Ranu BC. Dey SS. Hazra A. Tetrahedron  2003,  59:  2417 
  • 9b Ranu BC. Dey SS. Tetrahedron Lett.  2003,  44:  2865 ; and references cited therein
  • 10 Welton T. In Ionic Liquid in Synthesis   Wasserschield P. Welton T. Wiley-VCH; Weinheim: 2003.  p.94-103  
  • 11 Chiappe C. Capraro D. Conte V. Pieraccini D. Org. Lett.  2001,  3:  1061 
  • 12a Berthelot J. Guette C. Ouchefoune M. Desbene P.-L. Basselier J.-J. J. Chem. Res., Synop.  1986,  381 
  • 12b Berthelot J. Guette C. Essayegh M. Desbene P.-L. Basselier J.-J. Synth. Commun.  1986,  16:  1641 
  • 12c Berthelot J. Guette C. Ouchefoune M. Desbene P.-L. Basselier J.-J. Can. J. Chem.  1989,  67:  2061 
  • 12d Buckles RE. Popov AI. Zelezny WF. Smith RJ. J. Am. Chem. Soc.  1951,  73:  4525 
  • 13 Choudhury MK. Khan AT. Patel BK. Dey D. Kharmawophlang W. Lakshmiprapha TR. Mondal GC. Tetrahedron Lett.  1998,  39:  8163 
  • 14a Graven A. Jørgensen KA. Dahl S. Stanczak A. J. Org. Chem.  1994,  59:  3543 
  • 14b Naskar D. Roy S. Tetrahedron  2000,  56:  1369 
  • 15 Dictionary of Organic Compounds   5th ed., Vol. 1:  Buckingham J. Chapman & Hall; New York: 1982.  p.848