Synthesis 2005(14): 2367-2372  
DOI: 10.1055/s-2005-870023
PAPER
© Georg Thieme Verlag Stuttgart · New York

Synthesis and Structure of Chiral Methoxypyrrole Amino Acids (MOPAS)

Christoph Bonauer, Burkhard König*
Institut für Organische Chemie, Universität Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
Fax: +49(941)9434576; e-Mail: Burkhard.koenig@chemie.uni-regensburg.de;
Further Information

Publication History

Received 7 March 2005
Publication Date:
14 July 2005 (eFirst)

Abstract

A methoxypyrrole amino acid (MOPAS) resembling the structure of H2N-Val-Δ-Ala-OEt in β-sheet conformation has been prepared by a chiral auxiliary approach. The X-ray structure analysis confirms the absolute configuration of the dipeptide mimic. Standard peptide coupling procedures allow coupling of the chiral MOPAS with natural amino acids or their extension by additional MOPAS units. A tight self-association of bis-MOPAS 13 in CDCl3 and the affinity to Ac-Ala-Ile-OMe dipeptides illustrates the ability of the constrained dipeptide mimic MOPAS to interact with peptides.

    References

  • For reviews on peptide structure mimics see:
  • 1a Stigers KD. Soth MJ. Nowick JS. Curr. Opin. Chem. Biol.  1999,  3:  714 
  • 1b Schneider JP. Kelly JW. Chem. Rev.  1995,  95:  2169 
  • 1c Moriuchi T. Hirao T. Chem. Soc. Rev.  2004,  33:  294 
  • Reviews on β-sheet models:
  • 1d Gellman SH. Curr. Opin. Chem. Biol.  1998,  2:  717 
  • 1e Nowick JS. Acc. Chem. Res.  1999,  32:  287 
  • 1f Nowick JS. Smith EM. Pairish M. Chem. Soc. Rev.  1996,  25:  401 
  • 1g Gallmeier H.-C. König B. Eur. J. Org. Chem.  2003,  3473 
  • 2 Kahn M, Qabar MN, McMillan MK, Ogbu CO, Eguchi M, Kim H, Boatman PD, and Urban J. inventors; WO  9805333.  1998
  • 3a Maitra S. Nowick JS. In The Amide Linkage: Structural Significance in Chemistry Biochemistry and Materials Science   Greenberg A. Breneman CM. Liebman JF. Wiley; New York: 2000.  Chap. 15.
  • 3b For binding of inhibitors to neuronal nitric oxide synthase see: Liang J. Jaffrey SR. Guo W. Snyder SH. Clardy J. Nature Struct. Biol.  1999,  6:  735 
  • 3c For binding of Ras oncoproteins to Raf kinase see: Nassar N. Horn G. Herrmann C. Scherrer A. McCormick F. Wittinghofer A. Nature (London)  1995,  375:  554 
  • 3d For homodimerization of HIV-1 protease see: Zutshi R. Franciskovich J. Shultz M. Schweitzer B. Bishop P. Wilson M. Chmielewski J. J. Am. Chem. Soc.  1997,  119:  4841 
  • 3e For prion proteins see: Prusiner SB. Prions Prions Prions, In Current Topics in Microbiology and Immunology   Vol. 207:  Springer; Berlin: 1996. 
  • 3f Mestel R. Science (Washington, D. C.)  1996,  273:  184 
  • 3g Kuroda Y. Maeda Y. Nakagawa T. J. Am. Chem. Soc.  2000,  122:  12596 
  • 4a Nowick JS. Chung DM. Maitra K. Maitra S. Stigers KD. Sun Y. J. Am. Chem. Soc.  2000,  122:  7654 
  • 4b Boumendjel A. Roberts JC. Hu E. Pallai PV. J. Org. Chem.  1996,  61:  4434 
  • 4c Michne WF. Schroeder JD. Int. J. Pept. Protein Res.  1996,  47:  2 
  • 4d Roberts JC. Pallai PV. Rebek J. Tetrahedron Lett.  1995,  36:  691 
  • 4e Rzepecki P. Gallmeier H.-C. Geib N. Cernovska K. König B. Schrader T. J. Org. Chem.  2004,  69:  5168 
  • 4f Černovská K. Kemter M. Gallmeier H.-C. Rzepecki P. Schrader T. König B. Org. Biomol. Chem.  2004,  2:  1603 
  • 5a Rzepecki P. Wehner M. Molt O. Zadmard R. Harms K. Schrader T. Synthesis  2003,  1815 
  • 5b Kemp DS. Bowen BR. Muendel CC. J. Org. Chem.  1990,  55:  4650 
  • 5c Kemp DS. Trends Biotechnol.  1990,  8:  249 
  • 5d Kemp D. Bowen BR. Tetrahedron Lett.  1988,  29:  5077 
  • The work on β-sheet recognition and peptidomimetics has been extensively reviewed:
  • 6a Glenn MP. Fairlie DP. Mini Rev. Med. Chem.  2002,  2:  433 
  • 6b Peczuh MW. Hamilton AD. Chem. Rev.  2000,  100:  2479 
  • 7a Bonauer C. Zabel M. König B. Org. Lett.  2004,  6:  1349 
  • 7b Recent related work: Chakraborty TK. Mohan BK. Kumar SK. Kunwar AC. Tetrahedron Lett.  2003,  44:  471 
  • 7c Rao MHVR. Kumar SK. Kunwar AC. Tetrahedron Lett.  2003,  44:  7369 
  • 7d Nowick JS. Lam KS. Khasanova TV. Kemnitzer WE. Maitra S. Mee HT. Liu R. J. Am. Chem. Soc.  2002,  124:  4972 
  • 7e Nowick JS. Cary JM. Tsai JH. J. Am. Chem. Soc.  2001,  123:  5176 
  • 7f Nowick JS. Chung DM. Maitra K. Maitra S. Stigers KD. Sun Y. J. Am. Chem. Soc.  2001,  123:  1545 
  • 7g Nowick JS. Chung DM. Maitra K. Maitra S. Stigers KD. Sun Y. J. Am. Chem. Soc.  2000,  122:  7654 
  • 8a For a recent review on non-natural amino acids see: Chakraborty TK. Srinivasu P. Tapadar S. Mohan BK. J. Chem. Sci.  2004,  116:  187 
  • 8b For examples of other non-natural heterocyclic amino acids see: König B. Rödel M. Chem. Commun.  1998,  605 
  • 8c König B. Rödel M. Synth. Commun.  1998,  29:  943 
  • 8d Miltschitzky S. König B. Synth. Commun.  2004,  34:  2077 
  • For previous reports on chiral dipeptide mimetics see:
  • 9a Lombart H.-G. Lubell WD. J. Org. Chem.  1996,  61:  9437 
  • 9b Burkholder TP. Huber EW. Flynn GA. Bioorg. Med. Chem. Lett.  1993,  3:  231 
  • 9c Zabrocki J. Dunbar JB. Marshall KW. Toth MV. Marshall GR. J. Org. Chem.  1992,  57:  202 
  • 9d Nishi T. Kataoka M. Morisawa Y. Chem. Lett.  1989,  11:  1993 
  • 9e Belvisi L. Colombo L. Manzoni L. Potenza D. Scolastico C. Synlett  2004,  1449 
  • 9f Dondoni A. Marra A. Richichi B. Synlett  2003,  2345 
  • 9g Dietrich E. Lubell WD. J. Org. Chem.  2003,  68:  6988 
  • 9h Zhang J. Xiong C. Ying J. Wang W. Hruby VJ. Org. Lett.  2003,  5:  3115 
  • 9i Millet R. Domarkas J. Rombaux P. Rigo B. Houssin R. Henichart J.-P. Tetrahedron Lett.  2002,  43:  5087 
  • 9j Dragovich PS. Zhou R. Prins TJ. J. Org. Chem.  2002,  67:  741 
  • 9k Wang W. Xiong C. Hruby VJ. Tetrahedron Lett.  2001,  42:  3159 
  • 9l Feng Z. Lubell WD. J. Org. Chem.  2001,  66:  1181 
  • 9m Polyak F. Lubell WD. J. Org. Chem.  2001,  66:  1171 
  • 9n Angiolini M. Araneo S. Belvisi L. Cesarotti E. Checchia A. Crippa L. Manzoni L. Scolastico C. Eur. J. Org. Chem.  2000,  2571 
  • 9o Gosselin F. Lubell WD. J. Org. Chem.  2000,  65:  2163 
  • 9p Hanessian S. Mcnaughton-Smith G. Lombart H.-G. Lubell WD. Tetrahedron  1997,  53:  12789 
  • 10 Honore T. Hjeds H. Krogsgaard-Larsen P. Christiansen TR. Eur. J. Med. Chem.  1978,  13:  429 
  • For reviews on the addition of organometallic reagents to chiral imines see:
  • 12a Bloch R. Chem. Rev.  1998,  98:  1407 
  • 12b Enders D. Reinhold U. Tetrahedron: Asymmetry  1997,  8:  1895 
  • 13a Knochel P. Almena Perea JJ. Jones P. Tetrahedron  1998,  54:  8275 
  • 13b Knochel P. Chou T.-S. Jubert C. Rajagopal D. J. Org. Chem.  1993,  58:  588 
  • 14 For a recent example of the method used on solid support see: Wu G. Cai Z.-W. Bednarz MS. Kocy OR. Gavai AV. Godfrey JD. Washburn WN. Poss MA. Sher PM. J. Comb. Chem.  2005,  7:  99 
  • 16 For DNA binding properties of pyrrole amino acids see: Chakraborty TK. Mohan BK. Gnanamani M. Maiti S. Tetrahedron Lett.  2005,  46:  647 
11

A derivative of 1 bearing a methyl group in position 2 may cyclize more easily. However, our attempts to transform this compound into the Schiff base corresponding to compound 2 were not successful.

15

The self-association of 10 is one order of magnitude higher if compared to a Boc-(MOPAS)2-OEt missing the isopropyl substituent; see ref. 7a for data.

17

The self-association of 10 and the dipeptides were included in the binding model.