Planta Med 2005; 71(10): 917-922
DOI: 10.1055/s-2005-871248
Original Paper
Pharmacology
© Georg Thieme Verlag KG Stuttgart · New York

Crocetin Prevents Dexamethasone-Induced Insulin Resistance in Rats

Liang Xi1 , Zhiyu Qian1 , Xiangchun Shen1 , Na Wen1 , Yabing Zhang1
  • 1Department of Pharmacology, China Pharmaceutical University, Nanjing, P.R. China
Further Information

Publication History

Received: December 22, 2004

Accepted: April 8, 2005

Publication Date:
04 August 2005 (online)

Abstract

The main objective of the study was to examine whether crocetin, a natural product from Gardenia jaminoides Ellis, has beneficial effects on the state of insulin resistance induced by dexamethasone in a rat model. Measured using the oral glucose tolerance tests (OGTT), male Wistar rats treated with subcutaneous dexamethasone (0.08 mg/kg/d) for 6 weeks exhibited reduced insulin sensitivity at weeks 2 and 4 and impaired glucose tolerance at week 4. In the dexamethasone-treated group, serum insulin, free fatty acids (FFA), triglyceride (TG) and tumor necrosis factor (TNF)-α levels were significantly increased at the end of the study. In addition, the hepatic glycogen content was reduced as indicated by periodic acid-Schiff (PAS) staining, and pancreatic islet β cells showed compensatory hyperactivity suggested by immunohistochemical (IHC) staining using an antibody against insulin. Treatment with crocetin (40 mg/kg/d) significantly attenuated all the described effects of dexamethasone. These results suggest that crocetin might prevent the development of dexamethasone-induced insulin resistance and related abnormalities in rats.

Abbreviations

AUC:area under the curve

CON:control

CRO(H):high-dose crocetin

CRO(L):low-dose crocetin

CRO:crocetin

DEX:dexamethasone

FFA:free fatty acids

GAUC:area under the glucose curve

HE:hematoxylin-eosin

IAUC:area under the insulin curve

IHC:immunohistochemical

ISI:insulin sensitivity index

MET:metformin

OGTT:oral glucose tolerance test

PAS:periodic acid-Schiff

TG:triglyceride

TNF:tumor necrosis factor

References

  • 1 Andrews R C, Walker B R. Glucocorticoids and insulin resistance: old hormones, new targets.  Clin Sci. 1999;  96 513-23
  • 2 Perley M, Kipnis D M. Effect of glucocorticoids on plasma insulin.  N Engl J Med. 1965;  274 1237-41
  • 3 Willi S M, Kennedy A, Brant B P, Wallace P, Rogers N L, Garvey W T. Effective use of thiazolidinediones for the treatment of glucocorticoid-induced diabetes.  Diabetes Res Clin Pract. 2002;  58 87-96
  • 4 Arner P. The adipocyte in insulin resistance: key molecules and the impact of the thiazolidinediones.  Trends Endocrinol Metab. 2003;  14 137-45
  • 5 Borden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM.  Diabetes. 1997;  46 3-10
  • 6 Tappy L, Randin D, Vollenweider P, Vollenweider L, Paquot N, Scherrer U. et al . Mechanism of dexamethasone-induced insulin resistance in healthy humans.  J Clin Endocrinol Metab. 1994;  79 1063-9
  • 7 Goldstein B J. Insulin resistance as the core defect in type 2 diabetes mellitus.  Am J Cardiol. 2002;  90 G3-10
  • 8 Liu L S, Spelleken M, Rohrig K, Hauner H, Eckel J. Tumor necrosis factor-α acutely inhibits insulin signaling in human adipocytes: implication of the p80 tumor necrosis factor receptor.  Diabetes. 1998;  47 515-22
  • 9 Sethi J K, Hotamisligil G S. The role of TNFα in adipocyte metabolism.  Semin Cell Dev Biol. 1999;  10 19-29
  • 10 Abdullaev F I. Cancer chemopreventive and tumoricidal properties of saffron (Crocus sativus L.)  Exp Biol Med. 2002;  227 20-5
  • 11 Giaccio M. Crocetin from saffron: an active component of an ancient spice.  Crit Rev Food Sci Nutr. 2004;  44 155-72
  • 12 Uwaifo G I, Ratner R E. The role of insulin resistance, hyperinsulinemia, and thiazolidinediones in cardiovascular disease.  Am J Med. 2003;  115 S12-9
  • 13 Reaven GM and Chen Y DI. Insulin resistance, its consequences, and coronary heart disease: must we choose one culprit?.  Circulation. 1996;  93 1780-3
  • 14 Kajita K, Ishizuka T, Miura A, Kanoh Y, Ishizawa M, Kimura M. et al . Glucocorticoid-induced insulin resistance associates with activation of protein kinase C isoforms.  Cell Signal. 2001;  13 169-75
  • 15 Wang B H, Polya G M. Selective inhibition of cyclic AMP-dependent protein kinase by amphiphilic triterpenoids and related compounds.  Phytochemistry. 1995;  41 55-63
  • 16 Herbert V, Lau K S, Gottlieb C W, Bleicher S J. Coated charcoal immunoassay of insulin.  J Clin Endocrinol Metab. 1965;  25 1375-84
  • 17 Matsuda M, DeFronzo R A. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp.  Diabetes Care. 1999;  22 1462-70
  • 18 Ogawa A, Johnson J H, Ohneda M, McAllister C T, Inman L, Alam T ,. et al . Roles of insulin resistance and beta-cell dysfunction in dexamethasone-induced diabetes.  J Clin Invest. 1992;  90 497-504
  • 19 Mokuda O, Sakamoto Y. Peripheral insulin sensitivity is decreased by elevated nonesterfied fatty acid level in dexamethasone-treated rats.  Diabetes Nutr Metab. 1999;  12 252-5
  • 20 Ebeling P, Koivisto V A. Non-esterified fatty acids regulate lipid and glucose oxidation and glycogen synthase activity.  Diabetologia. 1994;  37 202-9
  • 21 Boden G, Chen X, Ruiz J, White J, Rossetti L. Mechanisms of fatty acid-induced inhibition of glucose uptake.  J Clin Invest. 1994;  93 2438-46
  • 22 Grundy S M. Hypertriglyceridemia, insulin resistance, and the metabolic syndrome.  Am J Cardiol. 1999;  83 F25-9
  • 23 Steiner G. Hyperinsulinaemia and hypertriglyceridaemia.  J Intern Med. 1994;  736 23-6
  • 24 Hotamisligil G S, Shargil N S, Spiegelman B M. Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance.  Science. 1993;  259 87-91
  • 25 Peraldi P, Xu M, Spiegelman B M. Thiazolidinediones block tumor necrosis factor-induced inhibition of insulin signaling.  J Clin Invest. 1997;  100 1863-9
  • 26 Katsuki A, Sumida Y, Murashima S, Murata K, Takarada Y, Ito K. et al . Serum levels of tumor necrosis factor-α are increased in obese patients with noninsulin-dependent diabetes mellitus.  J Clin Endocrinol Metab. 1998;  83 859-62
  • 27 Nobuhiko T, Nobuyuki U, Katsuhiro H, Hideyuki M, Kazuaki S. Effect of TNF-α-converting enzyme inhibitor on insulin resistance in fructose-fed rats.  Hypertension. 2002;  39 578-80
  • 28 Consoli A, Nurjhan N, Reilly J J, Bier D M, Gerich J E. Mechanism of increased gluconeogenesis in noninsulin-dependent diabetes mellitus. Role of alterations in systemic, hepatic, and muscle lactate and alanine metabolism.  J Clin Invest. 1990;  86 2038-45
  • 29 Severino C, Brizzi P, Solinas A, Secchi G, Maioli M, Tonolo G. Low-dose dexamethasone in the rat: a model to study insulin resistance.  Am J Physiol Endocrinol Metab. 2002;  283 E367-73
  • 30 Pugazhenthi S, Angel F J, Khandelwal I R. Effects of high sucrose diet on insulin-like effects of vanadate in diabetic rats.  Mol Cell Biochem. 1993;  122 77-84
  • 31 Wier G C, Laybutt D R, Kaneto H, Bonner-Wier S, Sharma A. Beta-cell adaptation and decompensation during the progression of diabetes.  Diabetes. 2001;  50 (suppl) S154-9
  • 32 Delaunay F, Khan A, Cintra A, Davani B, Ling Z C, Andersson A. et al . Pancreatic β-cells are important targets for the diabetogenic effects of glucocorticoids.  J Clin Invest. 1997;  100 2094-8
  • 33 Pick A, Levisetti M, Baldwin A, Bonner-Wier S. Failure of beta-cell mass compensation for insulin resistance in dexamethasone induced diabetes in female Zuck diabetic fatty (ZDF) rats.  Diabetes. 1998;  47 (suppl) A258

Zhiyu Qian

Department of Pharmacology

China Pharmaceutical University

P.O. Box 46

24 Tongjia Xiang

Nanjing 210009

People’s Republic of China

Phone: +86-25-8327-1322

Fax: +86-25-8327-1355

Email: trueqianzhiyu@yahoo.com.cn

>