Subscribe to RSS
DOI: 10.1055/s-2005-871546
Seleno-Imine: A New Class of Versatile, Modular N,Se Ligands for Asymmetric Palladium-Catalyzed Allylic Alkylation
Publication History
Publication Date:
14 June 2005 (online)

Abstract
The palladium-catalyzed asymmetric allylic alkylation of 1,3-diphenyl-2-propenyl acetate with dimethyl malonate in the presence of chiral seleno-imine ligands derived from an inexpensive and easily available chiral pool was investigated. Excellent yield and enantioselectivity (up to 97% ee) was achieved when ligand 4a was used.
Key words
seleno-imines - allylic alkylations - palladium-catalyzed
- 1
Comprehensive Asymmetric Catalysis
Jacobsen EN.Pfaltz A.Yamamoto H. Springer; Berlin: 1999. -
2a
Trost BM.Crawley ML. Chem. Rev. 2003, 103: 2921 -
2b
Trost BM. J. Org. Chem. 2004, 69: 5813 -
2c
Johannsen M.Jorgensen KA. Chem. Rev. 1998, 98: 1689 -
2d
Trost BM.Van Vranken DL. Chem. Rev. 1996, 96: 395 - 3
Masdeu-Bultó AM.Diéguez M.Martin E.Gómez M. Coord. Chem. Rev. 2003, 242: 159 - For chiral P-imine ligands, see:
-
4a
Saitoh A.Misawa M.Morimoto T. Synlett 1994, 483 -
4b
Saitoh A.Achiwa K.Tanaka K.Morimoto T. J. Org. Chem. 2000, 65: 4228 -
4c
Hu X.Dai H.Bai C.Chen H.Zheng Z. Tetrahedron: Asymmetry 2004, 15: 1065 -
4d
Lee JH.Son SU.Chung YK. Tetrahedron: Asymmetry 2003, 14: 2109 -
4e
Fukuda T.Takehara A.Iwao M. Tetrahedron: Asymmetry 2001, 12: 2793 -
4f
Mino T.Ogawa T.Yamashita M. J. Organomet. Chem. 2003, 665: 122 - For chiral S-imine ligands, see:
-
5a
Anderson JC.James DS.Mathias JP. Tetrahedron: Asymmetry 1998, 9: 753 -
5b
Adams H.Anderson JC.Cubbon R.James DS.Mathias JP. J. Org. Chem. 1999, 64: 8256 -
6a
Hou X.-L.Wu X.-W.Dai L.-X.Cao B.-X.Sun J. Chem. Commun. 2000, 1195 -
6b
Sprinz J.Kiefer M.Helmchen G. Tetrahedron Lett. 1994, 35: 1523 -
6c
Hiroi K.Suzuki Y.Abe I. Tetrahedron: Asymmetry 1999, 10: 1173 -
6d
You S.-L.Hou X.-L.Dai L.-X. Tetrahedron: Asymmetry 2000, 11: 1495 -
7a
Braga AL.Silva SJN.Lüdtke DS.Drekener RL.Silveira CC.Rocha JBT.Wessjohann LA. Tetrahedron Lett. 2002, 43: 7329 -
7b
Braga AL.Rodrigues OED.Paixão MW.Appelt HR.Silveira CC.Bottega DP. Synthesis 2002, 2338 -
7c
Braga AL.Appelt HR.Schneider PH.Silveira CC.Wessjohann LA. Tetrahedron: Asymmetry 1999, 10: 1733 -
7d
Braga AL.Vargas F.Andrade LH.Silveira CC. Tetrahedron Lett. 2002, 43: 2335 -
7e
Braga AL.Paixão MW.Lüdtke DS.Silveira CC.Rodrigues OED. Org. Lett. 2003, 5: 2635 -
7f
Braga AL.Paixão MW.Milani P.Silveira CC.Rodrigues OED.Alves EF. Chem. Commun. 2004, 2488 -
7g
Braga AL.Paixão MW.Milani P.Silveira CC.Rodrigues OED.Alves EF. Synlett 2004, 1297 -
7h
Schneider PH.Schrekker HS.Silveira CC.Wessjohann LA.Braga AL. Eur. J. Org. Chem. 2004, 2715 - 8 Chiral aminoalcohols were easily obtained by reduction of the corresponding amino acids:
McKennon MJ.Meyers AI. J. Org. Chem. 1993, 58: 3568 - 9
Osborn HMI.Sweeney JB. Synlett 1993, 145 -
10a
Tanner D. Angew. Chem., Int. Ed. Engl. 1994, 33: 599 -
10b
McCoull W.Davis FA. Synthesis 2000, 1347 -
12a
Brown JM.Hulmes DI.Guiry PJ. Tetrahedron 1994, 50: 4493 -
12b
Yamaguchi M.Shima T.Yamagishi T.Hida M. Tetrahedron: Asymmetry 1991, 2: 663 - 13
Trost BM.Murphy DJ. Organometallics 1985, 4: 1143
References
General Procedure for the Synthesis of Seleno-Imine Ligands 4a-i: An equimolar mixture of 3 (1 mmol) and the requisite aromatic aldehyde (1 mmol) with MgSO4 (0.54 g/mmol) was stirred in EtOH (2.5 mL/mmol) for 24 h. Filtration and concentration in vacuo gave ligands 4a-i as oils, which were unstable to chromatography, the compounds were obtained as practically pure materials.
4a: Yield: 90%; [α]D
20 +54 (c 0.6, CH2Cl2). 1H NMR (CDCl3, 400 MHz): δ = 8.14 (s, 1 H), 7.76-7.71 (m, 2 H), 7.37-7.04 (m, 8 H), 3.69 (dd, 2 H, J = 12, J = 19), 2.97-2.76 (m, 3 H), 1.92-1.90 (m, 1 H), 0.88 (d, 6 H, J = 5.8). 13C NMR (CDCl3, 100 MHz): δ = 160.36, 139.55, 136.18, 130.44, 129.66, 128.93, 128.88, 128.50, 128.25, 77.93, 33.17, 28.98, 28.32, 22.63, 19.70. HRMS-ESI: m/z calcd for C19H23NSe + H+: 346.1073; found: 346.1063.
4b: Yield: 65%; [α]D
20 -29 (c 0.276, CH2Cl2). 1H NMR (CDCl3, 400 MHz): δ = 7.88 (s, 1 H), 7.67-7.64 (m, 2 H), 7.39-6.93 (m, 13 H), 3.75 (dd, 2 H, J = 12, J = 21), 3.46-3.44 (m, 1 H), 3.04-2.80 (m, 4 H). 13C NMR (CDCl3, 100 MHz): δ = 160.81, 139.41, 138.55, 135.84, 130.50, 129.60, 129.22, 128.80, 128.59, 128.42, 128.31, 126.46, 126.03, 76.68, 42.95, 30.99, 27.50. HRMS-ESI: m/z calcd for C23H23NSe + H+: 394.1074; found: 394.1084.
4c: Yield: 72%; [α]D
20 +21 (c 1.13, CH2Cl2). 1H NMR (CDCl3, 400 MHz): δ = 8.16 (s, 1 H), 7.76-7.74 (m, 2 H), 7.42-7.40 (m, 3 H), 7.28-7.17 (m, 5 H), 3.77-3.73 (m, 2 H), 3.31-3.29 (m, 1 H), 2.77-2.61 (m, 2 H), 1.69-1.63 (m, 1 H), 1.48-1.39 (m, 2 H), 0.89-0.81 (m, 6 H). 13C NMR (CDCl3, 100 MHz): δ = 160.40, 139.57, 136.05, 130.60, 129.72, 128.57, 128.40, 128.25, 126.57, 69.91, 45.35, 31.20, 27.70, 24.67, 23.55, 21.38. HRMS-ESI: m/z calcd for C20H25NSe + H+: 360.1230; found: 360.1224.
4d: Yield: 70%; [α]D
20 +13 (c 1.08, CH2Cl2). 1H NMR (CDCl3, 400 MHz): δ = 8.16 (s, 1 H), 7.77-7.75 (m, 2 H), 7.41-7.39 (m, 3 H), 7.26-7.17 (m, 5 H), 3.74-3.66 (m, 2 H), 3.07-3.03 (m, 1 H), 2.88-2.75 (m, 2 H), 1.70-1.68 (m, 1 H), 1.50-1.47 (m, 1 H), 1.11-1.09 (m, 1 H), 0.90-0.83 (m, 6 H). 13C NMR (CDCl3, 100 MHz): δ = 160.31, 138.51, 136.14, 130.46, 128.53, 128.33, 128.25, 126.87, 126.50, 76.69, 40.04, 28.38, 27.50, 25.41, 15.63, 11.51. HRMS-ESI: m/z calcd for C20H25NSe + H+: 360.1230; found: 360.1224.
4e: Yield: 76%; [α]D 20 +52 (c 0.7, CH2Cl2). 1H NMR (CDCl3, 400 MHz): δ = 8.16 (s, 1 H), 7.72-7.71 (m, 2 H), 7.47-7.15 (m, 8 H), 3.34-2.96 (m, 3 H), 2.04-1.99 (m, 1 H), 0.95-0.91 (m, 6 H). 13C NMR (CDCl3, 100 MHz): δ = 160.68, 136.07, 133.55, 132.30, 130.82, 130.43, 129.34, 128.87, 126.46, 77.00, 32.74, 32.42, 19.71, 18.57. HRMS-ESI: m/z calcd for C18H21NSe + H+: 332.0911; found: 332.0915.
4f: Yield: 78%; [α]D
20 = +23 (c 0.6, CH2Cl2). 1H NMR (CDCl3, 400 MHz): δ = 8.60 (s, 1 H), 7.99-7.97 (m, 1 H), 7.35-7.16 (m, 6 H), 6.97-6.88 (m, 2 H), 3.88 (s, 3 H), 3.76-3.69 (m, 2 H), 3.01-2.99 (m, 1 H), 2.87-2.77 (m, 2 H), 1.95-1.90 (m, 1 H), 0.89 (d, 6 H, J = 6,72). 13C NMR (CDCl3, 100 MHz): δ = 158.80, 156.24, 139.60, 131.60, 128.90, 128.27, 127.52, 126.42, 124.68, 120.70, 111.56, 77.87, 55.50, 33.26, 28.32, 27.37, 19.71, 18.81. HRMS-ESI: m/z calcd for C20H25NOSe + H+: 376.1179; found: 376.1189.
4g: Yield: 90%; [α]D
20 +71 (c 0.58, CH2Cl2). 1H NMR (CDCl3, 400 MHz): δ = 8.09 (s, 1 H), 7.71-7.69 (m, 2 H), 7.29-7.16 (m, 5 H), 7.00-6.91 (m, 2 H), 3.81 (s, 3 H), 3.75-3.67 (m, 2 H), 2.95-2.76 (m, 3 H), 1.93-1.89 (m, 1 H), 0.94-0.81 (m, 6 H). 13C NMR (CDCl3, 100 MHz): δ = 161.51, 159.61, 139.62, 131.91, 129.95, 129.80, 129.17, 128.31, 126.47, 114.30, 113.93, 77.91, 55.50, 33.37, 28.80, 28.48, 19.72, 18.72. HRMS-ESI: m/z calcd for C20H25NOSe + H+: 376.1179; found: 376.1193.
4h: Yield: 88%; [α]D
20 +52 (c 0.75, CH2Cl2). 1H NMR (CDCl3, 400 MHz): δ = 8.57 (s, 1 H), 8.03-8.01 (m, 1 H), 7.37-7.19 (m, 8 H), 3.85 (s, 2 H), 3.01-2.97 (m, 1 H), 2.89-2.74 (m, 2 H), 1.94-1.92 (m, 1 H), 0.94-0.88 (m, 6 H). 13C NMR (CDCl3, 100 MHz): δ = 157.05, 139.41, 134.99, 133.25, 131.22, 129.61, 128.87, 128.60, 128.50, 126.85, 126.50, 77.32, 33.15, 28.43, 27.40, 19.62, 18.53. HRMS-ESI: m/z calcd for C19H22NClSe + H+: 380.070; found: 380.0856.
4i: Yield: 80%; [α]D
20 +61 (c 0.9, CH2Cl2). 1H NMR (CDCl3, 400 MHz): δ = 8.10 (s, 1 H), 7.70-7.67 (m, 3 H), 7.38-7.21 (m, 6 H), 3.70 (dd, 2 H, J = 12, J = 16), 2.95-2.73 (m, 3 H), 1.94-1.86 (m, 1 H), 0.89-0.86 (m, 6 H). 13C NMR (CDCl3, 100 MHz): δ = 158.98, 139.47, 136.40, 134.63, 129.42, 128.90, 128.78, 128.71, 128.54, 128.35, 126.56, 77.85, 33.36, 28.60, 27.81, 19.66, 19.61. HRMS-ESI: m/z calcd for C19H22NClSe + H+: 380.0684; found: 380.0673.
General Procedure for the Allylic Alkylation of 1,3-Diphenyl-2-propenyl Acetate with Dimethyl Malonate: A solution of [PdCl(η3-C3H5)]2 (50 µmol) and chiral ligand (5 mmol%) in dichloromethane (1.5 mL) was stirred for 30 min at r.t. Subsequently, a solution of rac-1,3-diphenyl-2-propenyl acetate (1.0 mmol), dimethyl malonate (3.0 mmol), BSA (3.0 mmol), and KOAc (3 mg, cat. quantity) in dichloromethane (0.8 mL) were added. The reaction mixture was stirred for 48 h. After this time, sat. NH4Cl (aq) was added to quench the reaction, followed by extraction with dichloromethane (3 × 15 mL). The combined organic layers were dried over MgSO4. The solvent was removed in vacuo. The yield was determined by isolated product and the ee by HPLC (Chiralcel OD, 0.5% 2-propanol-hexane, flow 0.5 mL/min, λ = 254nm).