Synthesis 2005(15): 2562-2570  
DOI: 10.1055/s-2005-872110
PAPER
© Georg Thieme Verlag Stuttgart · New York

Synthesis and Wagner-Meerwein Rearrangement of 9-(α-Hydroxyalkyl)xanthenes to 10-Substituted Dibenz[b,f]oxepins: Scope, Limitations and ab initio Calculations

Thomas Storz*a, Eric Vangrevelingheb, Peter Dittmara
a Process R&D, Chemical & Analytical Development, Novartis Pharma AG, 4002 Basel, Switzerland
b Computer-Aided Molecular Design Unit, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 4002 Basel, Switzerland
Fax: +1(805)3754532; e-Mail: tstorz@amgen.com;
Weitere Informationen

Publikationsverlauf

Received 27 February 2005
Publikationsdatum:
04. August 2005 (online)

Abstract

A series of 9-(hydroxy)alkyl xanthenes 5 was prepared in good yields via: (a) addition of 9-lithioxanthene to functionalized acetaldehydes, or, via a new method, (b) addition of carbanions to xanthene-9-carbaldehyde. A practical and efficient synthesis was found for the latter. Under acidic catalysis, the majority of the addition products underwent Wagner-Meerwein rearrangement to give either the corresponding, 10-substituted dibenz[b,f]oxepin 6 or the xanthenylid-9-ene β-elimination product 7. The first Wagner-Meerwein rearrangement of a homobenzylic cyanohydrin is reported. The dibenz[b,f]oxepins are potential precursors of neuroactive substances. To rationalize product distribution, and probe the scope of the new rearrangement, ab initio quantum mechanical calculations have been carried out on products and transition states in selected cases.

    References

  • 2 Burke ER. Kholodilov NG. Ann. Neurol.  1998,  44:  126 
  • 3a Zimmermann K. Waldmeier PC. Tatton WG. Pure Appl. Chem.  1999,  71:  2039 
  • 3b Mück-eler D. Pivac N. IDrugs  2000,  3:  530 
  • 3c Cloos PAC, Jensen FR, Boissy P, and Stahlhut M. inventors; WO  2004039773, A20513. 
  • 4a Waldmeier PC. Boulton AA. Cools AR. Kato AC. Tatton WG. Adv. Res. Neurodegen.  2000,  8:  197 
  • 4b Sagot Y. Toni N. Perrelet D. Lurot S. King B. Rixner H. Mattenberger L. Waldmeier PC. Kato AC. Br. J. Pharmacol.  2000,  131:  721 
  • 4c LeWitt PA. Neurology  2004,  63:  S23 
  • 5a Olivera R. SanMartin R. Churruca F. Dominguez E. J. Org. Chem.  2002,  67:  7215 
  • 5b SanMartin R. Olivera R. Churruca F. Tellitu I. Dominguez E. Trends Heterocycl. Chem.  2003,  9:  259 
  • 6 Bischoff S. In Novel Antipsychotic Drugs   Meltzer; New York: 1992.  p.117-134  
  • 7a Mercep M, Mesic M, and Pesic D. inventors; PCT Int. Appl., WO  2003099822, 20031204. 
  • 7b Kiyama R. Honma T. Hayashi K. Ogawa M. Hara M. Fujimoto M. Fujishita T. J. Med. Chem.  1995,  38:  2728 
  • 7c Lambrou GN, Latour E, and Waldmeier P. inventors; WO  2004066993, A10812. 
  • 8a Zimmermann K. Roggo S. Kragten E. Fürst P. Waldmeier P. Bioorg. Med. Chem. Lett.  1998,  8:  1195 
  • 8b Kanno S, and Okita T. inventors; JP  2000044568, A20215. 
  • 8c Arnold LA. Wenchen L. Guy RK. Org. Lett.  2004,  6:  3005 
  • 9 Tosylate 8: Anet FAL. Bavin PMG. Can. J. Chem.  1957,  35:  1081 . In this work, sulfonate esters of the parent alcohols 5a-m were not investigated as starting materials for the Wagner-Meerwein rearrangement
  • 10 Other authors reproduced this reaction in boiling benzene and found 85% yield of dibenz[b,f]oxepin: Hess BA. Bailey AS. Bartusek B. Boekelheide V. J. Am. Chem. Soc.  1969,  91:  1665 
  • 11a

    Smith Kline & French patent; US 3100207, 1963; claims a more lengthy approach to 10-aminomethyldibenz[b,f]oxe­-pins via 9-hydroxymethyl-9-aminoalkylxanthenes.

  • 11b Bergmann and Rabinovitz claimed the rearrangement of 9-(α-hydroxybenzyl)xanthene (5d) to 10-phenyldibenz-[b,f]oxepin but proof of structure was tentative (only IR, mp given): Bergmann D. Rabinovitz M. Isr. J. Chem.  1963,  1:  125 
  • In our hands, the substrate 5d did not rearrange, but rather gave the β-elimination product (7d, Table 1), in accordance with the theoretical calculations (vide supra, Table 3).
  • 11c Xanthene pKHA[THF] = 31.4: Fraser RR. Mansour TS. Savard S. J. Org. Chem.  1985,  50:  3232 
  • 11d The 9-lithiation of xanthene was originally reported by Nakai et al.: Nakai R. Sugii M. Tomono H. Bull. Inst. Chem. Res., Kyoto Univ.  1955,  33:  211 
  • It was also reported by Mahesh et al.:
  • 11e Mahesh VB. Seshadri TR. J. Sci. Ind. Res., Sect. B  1955,  14:  608 
  • 12 Only one other, more cumbersome method of preparation for this aldehyde (careful DIBAL-reduction of xanthene-9-carbonyl chloride) has been reported: Rochlin E. Rappoport Z. J. Am. Chem. Soc.  1992,  114:  230.  In our hands, this procedure gave mostly xanthone after aqueous workup and silica gel chromatography of the crude product
  • 15 Reichardt C. Solvents and Solvent Effects in Organic Chemistry   VCH-Wiley; Weinheim, N.Y.: 1988.  p.140ff 
  • 16 Jaguar 5.5   Schrödinger, LLC; Portland, OR: 1991-2003. 
  • 17 Szabo A. Ostlund NS. Modern Quantum Chemistry, Introduction to Advanced Electronic Structure Theory   MacMillan; New York: 1982. 
  • 18 Koch W. Holthausen MC. A Chemist’s Guide to Density Functional Theory   John Wiley and Sons; New York: 2001. 
  • 19 Pachuau Z. Lyngdoh D. J. Chem. Sci.  2004,  116:  83 
  • The putative spirocyclopropyl cyclohexadienyl transition state dates back to the pioneering work of Winstein et al., where this transition state had been invoked to rationalize rates of solvolysis and alkyl group migration in substituted, primary phenethyl tosylates and related systems; compare:
  • 20a Winstein S. Lindegren CR. Marshall H. Ingraham LL. J. Am. Chem. Soc.  1953,  75:  147 
  • 20b Denney DB. Goldstein B. J. Am. Chem. Soc.  1957,  79:  4948 
  • 20c Winstein S. Fainberg AH. J. Am. Chem. Soc.  1958,  80:  459 
  • 20d Raber DJ. Harris JM. Schleyer PVR. J. Am. Chem. Soc.  1971,  93:  4829 
  • 20e Loupy A. Seyden-Penne J. Tetrahedron  1973,  29:  1015 
1

Current address: Amgen Inc., One Amgen Center Drive, P. O. Box, Thousand Oaks, CA 91320-1799, USA.

13

Typical procedure (5k): To a solution of xanthene 3 (3.64 g, 20 mmol) in anhyd THF (60 mL) under Ar at -65 °C was added n-BuLi (1.1 equiv, 8.1 mL, 2.7 M solution in n-heptane). After stirring at -65 °C for 30 min, a fine red suspension formed. Ethyl formate (1.77 g, 24 mmol) in THF (12 mL) was added dropwise at -65 °C. Stirring at -60 °C to -70 °C for 3 h resulted in a clear, orange solution. After HPLC had indicated complete conversion of 3, glacial AcOH (1.32 g, 22 mmol) was added slowly, such that the temperature did not exceed -60 °C. To the resulting yellowish solution of 4 Huenig’s base (3.1 g, 24 mmol), followed by nitromethane (1.46 g, 24 mmol) were added. The turbid mixture was warmed to r.t. overnight. After quenching with aq AcOH and adjusting the pH to neutral, extraction with CH2Cl2 and purification of the crude product by silica gel chromatography afforded 5k (4.63 g, 85%) as a slightly yellowish solid. Similarly were prepared: 5i [KCN (1.0 equiv), -40 °C to r.t., no base, 91% yield), and 5j [ HPO(OEt)2 (1.1 equiv), -40 °C to r.t., Huenig’s base (1.2 equiv), 91% yield].

14

For substrates obtained using method B, it is best to avoid workup and isolation (see ref. 12), and instead use the in situ-prepared aldehyde(4) solution (see ref. 13) directly in the next step.