Abstract
A new methodology for the synthesis of N -arylpiperazines was developed using a poly(ethylene glycol)-derived solid support.
The reactions proceeded in up to 60% overall yield over four steps. The scope and
limitations of the method are discussed, as well as the utility of 13 C gel-phase NMR spectroscopy for reaction monitoring.
Key words
N -arylpiperazines - solid-phase synthesis - heterocycles - cleavage -
13 C gel-phase NMR spectroscopy
References
<A NAME="RC08305SS-1A">1a </A>
Raillard SP.
Ji G.
Mann AD.
Baer TA.
Org. Process Res. Dev.
1999,
3:
177
<A NAME="RC08305SS-1B">1b </A>
Meisenbach M.
Allmendinger T.
Mak C.-P.
Org. Process Res. Dev.
2003,
7:
553
<A NAME="RC08305SS-2">2 </A>
Price for 100 g of Versabeads™ VO400 loading 2 mol·kg-1 (as used in this article): e 739 equal to e 370 per mol. Price for 100 g of Rapp
Polymere hydroxymethyl polystyrene loading 1.5 mol·kg-1 : e 360 equal to e 240 per mol (price for 100 g of Rapp Polymere TentaGel Standard
(water compatible), loading 0.3 mol·kg-1 : e 1010 equal to e 33667 per mol)
<A NAME="RC08305SS-3A">3a </A>
Rademann J.
Grøtli M.
Meldal M.
Bock K.
J. Am. Chem. Soc.
1999,
121:
5459
<A NAME="RC08305SS-3B">3b </A>
Christensen SF.
Michael R.
Chimica Oggi/Chemistry Today (Focus on Peptides & Amino Acids)
2004,
48
<A NAME="RC08305SS-3C">3c </A>
Christensen SF.
Ramos M.
Michael R.
PharmaChem
2004,
9:
59
<A NAME="RC08305SS-4A">4a </A>
López-Rodriguez ML.
Ayala D.
Benhamú B.
Morcillo MJ.
Viso A.
Curr. Med. Chem.
2002,
9:
443
<A NAME="RC08305SS-4B">4b </A>
Bettinetti L.
Schlotter K.
Hübner H.
Gmeiner P.
J. Med. Chem.
2002,
45:
4594
<A NAME="RC08305SS-4C">4c </A>
Grundt P.
Carlson EE.
Cao J.
Bennett CJ.
McElveen E.
Taylor M.
Luedke RR.
Newman AH.
J. Med. Chem.
2005,
48:
839
<A NAME="RC08305SS-4D">4d </A>
Toogood PL.
Harvey PJ.
Repine JT.
Sheehan DJ.
VanderWel SN.
Zhou H.
Keller PR.
McNamara DJ.
Sherry D.
Zhu T.
Brodfuehrer J.
Choi C.
Barvian MR.
Fry DW.
J. Med. Chem.
2005,
48:
2388
<A NAME="RC08305SS-4E">4e </A>
López-Rodríguez ML.
Morcillo MJ.
Fernández E.
Benhamú B.
Tejada I.
Ayala D.
Viso A.
Campillo M.
Pardo L.
Delgado M.
Manzarenas J.
Fuentes JA.
J. Med. Chem.
2005,
48:
2548
<A NAME="RC08305SS-4F">4f </A>
Asahina Y.
Araya I.
Iwase K.
Iinuma F.
Hosaka M.
Ishizaki T.
J. Med. Chem.
2005,
48:
3443
<A NAME="RC08305SS-4G">4g </A>
Cappeli A.
Gallelli A.
Manini M.
Anzini M.
Mennuni L.
Makovec F.
Menziani MC.
Alcaro S.
Ortuso F.
Vomero S.
J. Med. Chem.
2005,
48:
3564
<A NAME="RC08305SS-5A">5a </A>
Lyon RA.
Titeler M.
McKenney JD.
Magee PS.
Glennon RA.
J. Med. Chem.
1986,
29:
630
<A NAME="RC08305SS-5B">5b </A>
Mishani E.
Dence CS.
McCarthy TJ.
Welch MJ.
Tetrahedron Lett.
1996,
37:
319
<A NAME="RC08305SS-5C">5c </A>
Elworthy TR.
Ford APDW.
Bantle GW.
Morgans DJ.
Ozer RS.
Palmer WS.
Repke DB.
Romero M.
Sandoval L.
Sjogren EB.
Talamas FX.
Vazquez A.
Wu H.
Arredondo NF.
Blue DR.
DeSousa A.
Gross LM.
Kava MS.
Lesnick JD.
Vimont RL.
Williams TJ.
Zhu Q.-M.
Pfister JR.
Clarke DE.
J. Med. Chem.
1997,
40:
2674
<A NAME="RC08305SS-5D">5d </A>
Orús L.
Martínez J.
Pérez S.
Oficialdegui AM.
Del Castillo J.-C.
Mourelle M.
Lesheras B.
Del Rio J.
Monge A.
Pharmazie
2002,
57:
515
<A NAME="RC08305SS-5E">5e </A>
Orus L.
Perez-Silanes S.
Oficialdegui A.-M.
Martinez-Esparza J.
Del Castillo J.-C.
Mourelle M.
Langer T.
Guccione S.
Donzella G.
Krovat EM.
Poptodorov K.
Lasheras B.
Ballaz S.
Hervias I.
Tordera R.
Del Rio J.
Monge A.
J. Med. Chem.
2002,
45:
4128
<A NAME="RC08305SS-5F">5f </A>
Romeo G.
Materia L.
Manetti F.
Cagnotto A.
Mennini T.
Nicoletti F.
Botta M.
Russo F.
Minneman KP.
J. Med. Chem.
2003,
46:
2877
<A NAME="RC08305SS-6A">6a </A>
Hauske JR.
Dorff P.
Tetrahedron Lett.
1995,
36:
1589
<A NAME="RC08305SS-6B">6b </A>
Raju B.
Kogan TP.
Tetrahedron Lett.
1997,
38:
3373
Other examples of 13 C gel-phase spectroscopy include:
<A NAME="RC08305SS-7A">7a </A>
Epton R.
Wellings DA.
Williams A.
React. Polym.
1987,
6:
143
<A NAME="RC08305SS-7B">7b </A>
Look GC.
Holmes CP.
Chinn JP.
Gallop MA.
J. Org. Chem.
1994,
59:
7588
<A NAME="RC08305SS-7C">7c </A>
Barn DR.
Morphy JR.
Rees DC.
Tetrahedron Lett.
1996,
37:
3213
<A NAME="RC08305SS-7D">7d </A>
Lee HB.
Balasubramanian S.
J. Org. Chem.
1999,
64:
3454
<A NAME="RC08305SS-7E">7e </A>
Ruhland T.
Pedersen H.
Andersen K.
Synthesis
2003,
2236
<A NAME="RC08305SS-8A">8a </A>
Andersen HS.
Olsen OH.
Iversen LF.
Sørensen ALP.
Mortensen SB.
Christensen MS.
Branner S.
Hansen TK.
Lau JF.
Jeppesen L.
Moran EJ.
Su J.
Bakir F.
Judge L.
Shahbz M.
Collins T.
Vo T.
Newman MJ.
Ripka WC.
Møller NPH.
J. Med. Chem.
2002,
45:
4443
<A NAME="RC08305SS-8B">8b </A>
Laduron F.
Tamborowsky V.
Moens L.
Hórvath A.
De Smaele D.
Leurs S.
Org. Process Res. Dev.
2005,
9:
102
<A NAME="RC08305SS-9">9 </A>
Ho CY.
Kukla MJ.
Tetrahedron Lett.
1997,
38:
2799
<A NAME="RC08305SS-10">10 </A>
Massicot F.
Schneider R.
Fort Y.
Illy-Cherrey S.
Tillement O.
Tetrahedron
2000,
56:
4765 ; and references cited therein
<A NAME="RC08305SS-11A">11a </A>
Narasimhan S.
Madhavan S.
Balakumar R.
Swarnalakshmi S.
Synth. Commun.
1997,
27:
391
For an example of a reduction where Zn(BH4 )2 is generated in situ, see:
<A NAME="RC08305SS-11B">11b </A>
Nair V.
Prabhakaran J.
George TG.
Tetrahedron
1997,
53:
15061
For a general review of the synthetic applications of Zn(BH4 )2 , see:
<A NAME="RC08305SS-11C">11c </A>
Narasimhan S.
Balakumar R.
Aldrichimica Acta
1998,
31:
19
<A NAME="RC08305SS-12">12 </A> Zr(BH4 )4 has been employed for a similar purpose, see:
Narasimhan S.
Balakumar R.
Synth. Commun.
2000,
30:
4387
<A NAME="RC08305SS-13A">13a </A>
Lee S.-H.
Matsuhisa H.
Koch G.
Zimmermann J.
Clapham B.
Janda KD.
J. Comb. Chem.
2004,
6:
822
<A NAME="RC08305SS-13B">13b </A>
Mormeneo D.
Llebaria A.
Delgado A.
Tetrahedron Lett.
2004,
45:
6831
(c)
Sumiyoshi H.
Shimizu T.
Katoh M.
Baba Y.
Sodeoka M.
Org. Lett.
2002,
4:
3923
<A NAME="RC08305SS-14">14 </A>
Foguet R,
Forne E,
Sacristan A, and
Ortiz JA. inventors; Eur. Pat. Appl. EP 407437.
; Chem. Abstr. 1989 , 111 , 7437
<A NAME="RC08305SS-15A">15a </A>
Mes GM.
van Ramesdonk HJ.
Verhoeven JW.
J. Am. Chem. Soc.
1984,
106:
1335
<A NAME="RC08305SS-15B">15b </A>
Brenner E.
Schneider R.
Fort Y.
Tetrahedron
1999,
55:
12829
<A NAME="RC08305SS-16">16 </A>
Compound 3h was only sparingly soluble in the NMR solvent, so quaternary carbon peaks were not
visible.
<A NAME="RC08305SS-17">17 </A>
Gentle magnetic stirring did not appear to damage the resin. Vigorous magnetic stirring,
however, caused significant damage due to grinding.