RSS-Feed abonnieren
DOI: 10.1055/s-2005-918930
First Example of Functionalization of Activated Quinolines by Indoles Using CeCl3·7H2O [1]
Publikationsverlauf
Publikationsdatum:
10. Oktober 2005 (online)

Abstract
Indoles undergo smooth addition to activated quinolines and isoquinolines in the presence of CeCl3·7H2O under extremely mild conditions to provide 2-(1H-3indolyl)-1,2-dihydroquinolines and isoquinolines in excellent yields with high selectivity. It is entirely a new protocol to functionalize both indoles and quinolines in a single-step operation.
Key words
aza-aromatics - indolyl quinolines - cerium compounds
IICT Communication No: 050804.
-
2a
Magnus P.Rodroaguez-Lopez J.Mulholland K.Matthews I. J. Am. Chem. Soc. 1992, 114: 382 -
2b
Comins DL.Sajan PJ. Pyridines and their Benzo Derivatives: Reactivity at the Ring, In Comprehensive Heterocyclic Chemistry II Vol. 5:Katritzky AP.Rees VW.Scriven EF. Pergamon Press; Oxford: 1996. p.37-38 -
2c
Katritzky AR.Rachwal S.Rachwal S. Tetrahedron 1996, 52: 15031 -
2d
Itoh T.Miyazaki M.Nagata K.Ohsawa A. Tetrahedron 2000, 56: 4383 -
3a
Volkmann RA. In Comprehensive Organic Synthesis Vol. 1:Trost BM.Fleming I. Pergamon Press; Oxford: 1991. p.355-396 -
3b
Yamamoto Y.Asao N. Chem. Rev. 1993, 93: 2207 -
3c
Kobayashi S.Ishitani H. Chem. Rev. 1999, 99: 1069 - 4
Sundberg RJ. The Chemistry of Indoles Academic Press; New York: 1970. -
5a
Stout DM.Meyers AI. Chem. Rev. 1982, 82: 223 -
5b
Comins DL.Zhang Y.Joseph SP. Org. Lett. 1999, 1: 657 -
5c
Itoh T.Miyazaki M.Nagata K.Ohsawa A. Tetrahedron 2000, 56: 4383 -
5d
Sieck O.Schaller S.Grimme S.Liebscher J. Synlett 2003, 337 - 6
Hatano B.Haraguchi Y.Kozima S.Yamaguchi R. Chem. Lett. 1995, 1003 -
7a
Yamaguchi R.Nakayasu T.Hatano B.Nagura T.Kozima S.Fujitha K.-I. Tetrahedron 2001, 57: 109 -
7b
Yamaguchi R.Mochizuki K.Kozima S.Takaya H. J. Chem. Soc., Chem. Commun. 1993, 981 -
7c
Haraguchi Y.Kozima S.Yamaguchi R. Tetrahedron: Asymmetry 1996, 7: 443 -
8a
Takamura M.Funabashi K.Kanai M.Shibasaki M. J. Am. Chem. Soc. 2000, 122: 6327 -
8b
Yamaguchi R.Tanaka M.Matsuda T.Okano T.Nagura T.Fujitha K.-I. Tetrahedron Lett. 2002, 43: 8871 - 9
Chang YM.Lee SH.Nam MH.Cho MY.Park YS.Yoon CM. Tetrahedron Lett. 2005, 46: 3053 - 10
Chang YM.Park YS.Lee SH.Yoon CM. Tetrahedron Lett. 2004, 45: 9049 - 11
Diaz JL.Miguel M.Lavilla R. J. Org. Chem. 2004, 69: 3550 -
12a
Yadav JS.Reddy BVS.Gupta MK.Prabhakar A.Jagadeesh B. Chem. Commun. 2004, 2124 -
12b
Yadav JS.Reddy BVS.Srinivas M.Sathaiah K. Tetrahedron Lett. 2005, 46: 3489 -
13a
Cappa A.Marcantoni E.Torregiani E.Bartoli G.Bellucci MC.Bosco M.Sambri L. J. Org. Chem. 1999, 64: 5696 -
13b
Marcantoni E.Nobili F.Bartoli G.Bosco M.Sambri L.Torregiani E. J. Org. Chem. 1997, 62: 4183 -
13c
Di Dea M.Marcantoni E.Torregiani E.Bartoli G.Bellucci MC.Bosco M.Sambri L. J. Org. Chem. 2000, 65: 2830
References
IICT Communication No: 050804.
14
General Procedure.
To a stirred solution of quinoline (1 mmol) in of MeCN (3 mL) was added ethyl chloroformate (1.5 mmol) slowly at 0 °C and the mixture stirred at this temperature for 30 min. To the resulting N-acyliminium ion was added CeCl3·7H2O (0.3 mmol) and indole (1 mmol) at r.t. and the resulting mixture stirred for the appropriate time (Table
[1]
). After complete conversion as indicated by TLC, the reaction mixture was quenched with H2O (10 mL) and extracted with CH2Cl2 (2 × 15 mL). The combined extracts were dried over anhyd Na2SO4, and concentrated in vacuo. The resulting product was purified by column chromatography on silica gel (Merck, 100-200 mesh, EtOAc-hexane, 2:8) to afford a pure 2-(3-indolyl)-1,2-dihydroquinoline.
Spectroscopic Data for Selected Products.
Compound 3a: 1H NMR (300 MHz, CDCl3): δ = 7.86 (s, 1 H), 7.78 (d, 1 H, J = 5.9 Hz), 7.32 (br s, 1 H), 7.19 (d, 1 H, J = 7.4 Hz), 7.13-6.98 (m, 5 H), 6.78 (s, 1 H), 6.62 (d, 1 H, J = 9.7 Hz), 6.53 (d, 1 H, J = 4.5 Hz), 6.25 (dd, 1 H, J = 5.9, 2.9 Hz), 4.35 (m, 2 H), 1.40 (t, 3 H, J = 7.4 Hz). IR (KBr): ν = 3334, 3050, 2985, 1684, 1533, 1489, 1394, 1310, 1232, 1119, 1039, 752 cm-1. FAB-MS: m/z = 318 [M+], 289, 273, 245, 218, 202, 158, 130, 103, 77, 57.
Compound 3f: 1H NMR (300 MHz, CDCl3): δ = 7.80 (br s, 2 H), 7.25 (s, 1 H), 7.20 (d, 1 H, J = 7.5 Hz), 7.14-7.03 (m, 2 H), 6.91 (s, 1 H), 6.87 (d, 1 H, J = 8.3 Hz), 6.80 (d, 1 H, J = 4.3 Hz), 6.58 (d, 1 H, J = 9.0 Hz), 6.51 (d, 1 H, J = 3.7 Hz), 6.24 (dd, 1 H, J = 6.0, 3.0 Hz), 4.30 (m, 2 H), 2.30 (s, 3 H), 1.40 (t, 3 H, J = 7.4 Hz). IR (KBr): ν = 3325, 3046, 2982, 1664, 1494, 1386, 1321, 1266, 1223, 1110, 1018, 742, 645 cm-1. FAB-MS: m/z = 332 [M+] 287, 259, 216, 172, 154, 136, 107, 69, 55.
Compound 3j: 1H NMR (300 MHz, CDCl3): δ = 7.87 (s, 1 H), 7.72 (d, 1 H, J = 5.9 Hz), 7.22 (s, 1 H,), 7.15-7.01 (m, 5 H), 6.98 (s, 1 H), 6.86 (d, 1 H, J = 2.2 Hz), 6.62 (s, 1 H), 4.36 (q, 2 H, J = 14.1, 7.4 Hz), 1.38 (t, 3 H, J = 7.4 Hz). IR (KBr): ν = 3416, 3051, 2987, 1673, 1555, 1481, 1320, 1248, 1119, 1018, 886, 743 cm-1. FAB-MS: m/z = 398 [M+], 351, 323, 317, 279, 244, 207, 154, 136, 117, 107, 90, 78, 70, 56.