Synthesis 2006(9): 1549-1555  
DOI: 10.1055/s-2006-926444
FEATUREARTICLE
© Georg Thieme Verlag Stuttgart · New York

Synthesis and Spectroscopic Properties of 4a,14a-Diazoniaanthra[1,2-a]anthracene and 13a,16a-Diazoniahexaphene Derived from 1,7-Dimethylnaphthalene

Anton Granzhana, Jan W. Batsb, Heiko Ihmels*a
a Institut für Organische Chemie II, Universität Siegen, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany
b Institut für Organische Chemie und Chemische Biologie, Johann-Wolfgang-Goethe-Universität Frankfurt, Marie-Curie-Str. 11, 60439 Frankfurt am Main, Germany
Fax: +49(271)7404052; e-Mail: ihmels@chemie.uni-siegen.de;
Further Information

Publication History

Received 23 February 2006
Publication Date:
12 April 2006 (eFirst)

Abstract

An improved preparation of 1,7-dimethylnaphthalene is presented, which is used as a precursor for the synthesis of diazonia­hexacyclic salts, namely, 4a,14a-diazoniaanthra[1,2-a]anthracene (3) and 13a,16a-diazoniahexaphene (7). The influence of the reaction conditions on the formation of these isomers was investigated. Notably, the selectivity of the reactions depends significantly on the acid employed in the cyclization step. Both compounds exhibit similar absorption and fluorescence emission properties. Compound 3 exhibits a remarkable photopersistence in the solid state and in air-saturated aqueous solutions. However, diazoniahexaphene 7 undergoes rapid photodegradation in solution. X-ray diffraction analysis reveals that compound 3 adopts a helicene structure in the crystalline state.

    References

  • 1a Berresheim AJ. Müller M. Müllen K. Chem. Rev.  1999,  99:  1747 
  • 1b Pschirer NG. Kohl C. Nolde F. Qu J. Müllen K. Angew. Chem. Int. Ed.  2006,  45:  1401 ; Angew. Chem. 2006, 118, 1429
  • 1c Saettel N. Katsonis N. Marchenko A. Teulade-Fichou M.-P. Fichou D. J. Mater. Chem.  2005,  15:  3175 
  • 2a Teulade-Fichou M.-P. Vigneron J.-P. In DNA and RNA Binders: From Small Molecules to Drugs   Demeunynck M. Bailly C. Wilson WD. Wiley-VCH; Weinheim: 2003.  Vol. 1:  p.278-314  
  • 2b Grinstaff MW. Angew. Chem. Int. Ed.  1999,  38:  3629 ; Angew. Chem. 1999, 111, 3845
  • 3a Arai S. Hida M. In Advances in Heterocyclic Chemistry   Katritzky AR. Academic Press; San Diego, CA: 1992.  Vol. 55:  p.261-358  
  • 3b Ihmels H. In Science of Synthesis   Black D. Thieme; Stuttgart: 2005.  Vol. 15:  p.907-946  
  • 4 Ihmels H. Faulhaber K. Vedaldi D. Dall’Acqua F. Viola G. Photochem. Photobiol.  2005,  81:  1107 
  • 5 Viola G. Ihmels H. Kraußer H. Vedaldi D. Dall’Acqua F. ARKIVOC  2004,  (v):  219 
  • 6 Granzhan A. Ihmels H. ChemBioChem  2006,  in press 
  • 7 Bradsher CK. Sherer JP. J. Heterocycl. Chem.  1968,  5:  253 
  • 8 Fields DL. Regan TH. J. Heterocycl. Chem.  1973,  10:  195 
  • 9 Barnett EB. Sanders FG. J. Chem. Soc.  1933,  434 
  • 10 Bailey AS. Bryant KC. Hancock RA. Morrell SH. Smith JC. J. Inst. Petroleum  1947,  33:  503 
  • 11a Horning EC. Reisner DB. J. Am. Chem. Soc.  1949,  71:  1036 
  • 11b Mogilaiah K. Vasudeva Reddy N. Randheer Reddy G. Synth. Commun.  2003,  33:  3109 
  • 11c Mahmoodi NO. Jazayri M. Synth. Commun.  2001,  31:  1467 
  • 12 Sepiol J. Synthesis  1983,  559 
  • 13 Suld G. Stuart AP. J. Org. Chem.  1964,  29:  2939 
  • 14a Wolinska-Mocydlarz J. Canonne P. Leitch LC. Synthesis  1974,  566 
  • 14b Terfort A. Görls H. Brunner H. Synthesis  1997,  79 
  • 15 Bradsher CK. Parham JC. J. Org. Chem.  1963,  28:  83 
  • 16a Granzhan A. Ihmels H. Mikhlina K. Deiseroth H.-J. Mikus H. Eur. J. Org. Chem.  2005,  4098 
  • 16b Krapcho AP. Cadamuro SA. J. Heterocycl. Chem.  2004,  41:  291 
  • 17a Bradsher CK. Chem. Rev.  1987,  87:  1277 
  • 17b Bradsher CK. In Comprehensive Heterocyclic Chemistry   Katritzky AR. Reeds CW. Pergamon; Oxford: 1984.  Vol. 2:  p.525-579  
  • 18a Ihmels H. Leusser D. Pfeiffer M. Stalke D. J. Org. Chem.  1999,  64:  5715 
  • 18b Ihmels H. Mohrschladt CJ. Schmitt A. Bressanini M. Leusser D. Stalke D. Eur. J. Org. Chem.  2002,  2624 
  • 18c Maassarani F. Pfeffer M. Le Borgne G. Organometallics  1990,  9:  3003 
  • 18d Sato K. Arai S. Yamagishi T. Tanase T. Acta Crystallogr., Sect. C: Cryst. Struct. Commun.  2001,  57:  174 
  • 19a Birks JB. Photophysics of Aromatic Molecules   Wiley-Interscience; London: 1970. 
  • 19b Clar E. Wallenstein H. Avenarius R. Chem. Ber.  1929,  62:  950 
  • 19c Clar E. Chem. Ber.  1940,  73:  81 
  • 20 Berlman IB. J. Phys. Chem.  1970,  74:  3085 
  • 21a Harvey RG. Polycyclic Aromatic Hydrocarbons   Wiley-VCH; New York: 1997. 
  • 21b Laarhoven WH. Cuppen TJ. Nivard RJF. Tetrahedron  1970,  26:  4865 
  • 22a Demas JN. Crosby GA. J. Phys. Chem.  1971,  75:  991 
  • 22b Valeur B. Molecular Fluorescence: Principles and Applications   Wiley-VCH; Weinheim: 2002. 
  • 23 Jones G. Jackson WR. Choi CY. Bergmark WR. J. Phys. Chem.  1985,  89:  294 
  • 25 Ried W. Bodem H. Chem. Ber.  1958,  91:  1981 
  • 26a Sheldrick GM. SHELXS-97-Program for the Solution of Crystal Structures   University of Göttingen; Germany: 1997. 
  • 26b Sheldrick GM. SHELXL-97-Program for the Refinement of Crystal Structures   University of Göttingen; Germany: 1997. 
24

4,4-Dimethoxy-2-methyl-1-(2-tolyl)butan-2-ol: bp 90 °C/0.06 mbar; 1H NMR (400 MHz, CDCl3): δ = 1.21 (s, 3 H, C2-CH3), 1.80 (dd, 3 J = 5.0 Hz, 2 J = 14.3 Hz, 1 H, 3-Ha), 1.91 (dd, 3 J = 6.7 Hz, 2 J = 14.3 Hz, 1 H, 3-Hb), 2.36 (s, 3 H, Ar-CH3), 2.78 (d, 2 J = 13.7 Hz, 1 H, 1-Ha), 2.86 (d, 2 J = 13.7 Hz, 1 H, 1-Hb), 3.16 (s, 1 H, OH), 3.32 (s, 3 H, OMea), 3.35 (s, 3 H, OMeb), 4.68 (dd, 3 J = 5.0 Hz, 3 J = 6.7 Hz, 1 H, 4-H), 7.11-7.16 (complex m, 4 H, Ar-H); 13C NMR (100 MHz CDCl3): δ = 20.5 (CH3), 27.2 (CH3), 42.9 (CH2), 44.9 (CH2), 52.6 (CH3), 53.2 (CH3), 71.9 (Cq), 102.6 (CH), 125.4 (CH), 126.4 (CH), 130.4 (CH), 131.6 (CH), 135.9 (Cq), 137.4 (Cq).

27

CCDC-298121 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif.