Abstract
The anti-inflammatory effect of ginsenosides Rg3 and Rh2, which improves ischemic
brain injury induced by middle cerebral artery occlusion, was investigated in lipopolysaccharide
(LPS) and IFN-γ-induced murine BV-2 microglial cells. Ginsenoside Rh2 inhibited the
production of NO, with an IC50 value of 17 μM. The inhibitory effect of Rh2 on NO correlates with the decreased
protein and mRNA expression of an inducible NO synthase (iNOS) gene. Additionally,
ginsenoside Rh2 inhibited the expression of COX-2, pro-inflammatory TNF-α and IL-1β
in BV-2 cells induced by LPS/IFN-γ, while it increased the expression of the anti-inflammatory
cytokine IL-10. Electrophorectic mobility shift assays revealed that ginsenoside Rh2
significantly inhibited the LPS/IFN-γ-induced AP-1 DNA binding activity, while it
enhanced the protein binding to CRE sequences. However, it did not affect NF-κB binding
activity. Thus, the anti-inflammatory effect of Rh2 appears to depend on the AP-1
and protein kinase A (PKA) pathway. The anti-inflammatory effect of ginsenoside Rg3
against LPS/IFN-γ-activated BV-2 cells was less potent than that of ginsenoside Rh2.
These findings suggest that the in vivo anti-ischemic effect of ginsenoside Rg3 may originate from ginsenoside Rh2, which
is a main metabolite of ginsenoside Rg3 by intestinal microflora, and that of ginsenoside
Rh2 may be due to its anti-inflammatory effect in brain microglia.
Abbreviations
COX:cyclooxygenase
DMEM:Dulbecco’s modified Eagle medium
ECL:enhanced chemiluminescence
EMSA:electrophoretic mobility shift assay
IFN:interferon
IL:interleukin
iNOS:inducible NO synthase
NO:nitric oxide
PKA:protein kinase A
RT-PCR:reverse transcriptase-polymerase chain reaction
TNF-α:tumor necrosis factor-alpha
Key words
Ginsenoside Rg3 - ginsenoside Rh2 - microglia - iNOS - AP-1 - PKA
References
1
Shibata S, Fujita M, Itokawa H, Tanaka O, Ishii T.
Studies on the constituents of Japanese and Chinese crude drugs. XI. Panaxadiol, a
sapogenin of ginseng roots.
Chem Pharm Bull.
1963;
11
759-64
2
Tanaka N, Tanaka O, Shibata S.
Chemical studies on the oriental plant drugs. XXVIII. Saponins and sapogenins of ginseng.
Stereochemistry of sapogenin of ginsenoside Rb1, Rb2 and Rc.
Chem Pharm Bull.
1972;
20
1212-6
3
Kitagawa I, Yoshikawa M, Yoshihara M, Hayashi T, Taniyama T.
Chemical studies of crude drugs (1). Constituents of Ginseng radix rubra.
Yakugaku Zasshi.
1983;
103
612-22
4
Han B H, Park M H, Han Y N, Woo L K, Sankawa U, Yahara S. et al .
Degradation of ginseng saponins under mild acidic conditions.
Planta Med.
1982;
44
146-9
5
Bae E A, Han M J, Kim E J, Kim D H.
Transformation of ginseng saponins to ginsenoside Rh2 by acids and human intestinal
bacteria and biological activities of their transformants.
.
2004;
27
61-7
6
Kim N D, Kang S Y, Park J H, Schini-Kerth V B.
Ginsenoside Rg3 mediates endothelium-dependent relaxation in response to ginsenosides
in rat aorta: role of K+ channels.
J Pharmacol.
1999;
367
41-9
7
Mochizuki M, Yoo C Y, Matsuzawa K, Sato K, Saiki I, Tono-oka S. et al .
Inhibitory effect of tumor metastasis in mice by saponins, ginsenoside Rb2, 20(R )- and 20(S )-ginsenoside Rg3 of red ginseng.
Biol Pharm Bull.
1995;
18
1197-202
8
Shinkai K, Akedo H, Mukai M, Imamura F, Isoai A, Kobayashi M. et al .
Inhibition of in vitro tumor cell invasion by ginsenoside Rg3.
J Cancer Res.
1996;
87
357-62
9
Tian J, Fu F, Geng M, Jiang Y, Yang J, Jiang W. et al .
Neuroprotective effect of 20(S )-ginsenoside Rg3 on cerebral ischemia in rats.
Neurosci Lett.
2005;
374
92-7
10
Bae E A, Han M J, Choo M K, Park S Y, Kim D H.
Metabolism of 20(S )- and 20(R )-ginsenoside Rg3 by human intestinal bacteria and its relation to in vitro biological activities.
Biol Pharm Bull.
2002;
25
58-63
11
Park E K, Choo M K, Oh J K, Ryu J H, Kim D H.
Ginsenoside Rh2 reduces ischemic brain injury in rats.
Biol Pharm Bull.
2004;
27
433-6
12
Chao C C, Hu S, Molitor T W, Shaskan E G, Peterson P K.
Activated microglia mediate neuronal cell injury via a nitric oxide mechanism.
J Immunol.
1992;
149
2736-41
13
Laskin D L, Pendino K J.
Macrophages and inflammatory mediators in tissue injury.
Annu Rev Pharmacol Toxicol.
1995;
35
655-77
14
Bocchini V, Mazzolla R, Barluzzi R, Blasi E, Sick P, Kettenmann H.
An immortalized cell line expresses properties of activated microglial cells.
J Neurosci Res.
1992;
31
616-21
15
Ishihara T, Kohno K, Ushio S, Iwaki K, Ikeda M, Kurimoto M.
Tryptanthrin inhibits nitric oxide and prostaglandin E2 synthesis by murine macrophages.
Eur J Pharmacol.
2000;
407
197-204
16
Chi Y S, Lim H, Park H, Kim H P.
Effects of wogonin, a plant flavone from Scutellaria radix, on skin inflammation:
in vivo regulation of inflammation-associated gene expression.
Biochem Pharmacol.
2003;
66
1271-8
17
Ryu S Y, Ock M H, Kim K M.
Yomogin inhibits the degranulation of mast cells and the production of nitric oxide
in activate in activated RAW264.7 cells.
Planta Med.
2000;
66
171-3
18
Park E K, Shin Y W, Lee H U, Kim S S, Lee Y C, Lee B Y. et al .
Inhibitory effect of ginsenoside Rb1 and compound K on NO and prostaglandin E2 biosyntheses
of RAW264.7 cells induced by lipopolysaccharide.
Biol Pharm Bull.
2005;
28
652-6
19
Barber P A, Demchuk A M, Hirt L, Buchan A M.
Biochemistry of ischemic stroke.
Adv Neurol.
2003;
92
151-64
20
Bartosik-Psujek H, Belniak E, Stelmasiak Z.
Markers of inflammation in cerebral ischemia.
Neurol Sci.
2003;
24
279-80
21
Reynolds M A, Kirchick H J, Dahlen J R, Anderberg J M, McPherson P H, Nakamura K K.
et al .
Early biomarkers of stroke.
Clin Chem.
2003;
49
1733-9
22
Dolan S, Field L C, Nolan A M.
The role of nitric oxide and prostaglandin signaling pathways in spinal nociceptive
processing in chronic inflammation.
Pain.
2000;
86
311-20
23
Lindsberg P J, Grau A J.
Inflammation and infections as risk factors for ischemic stroke.
Stroke.
2003;
34
2518-32
24
Leclercq I A, Farrell G C, Sempoux C, Pena A D, Horsmans Y.
Curcumin inhibits NF-kappaB activation and reduces the severity of experimental steatohepatitis
in mice.
J Hepatol.
2004;
41
926-34
25
Keum Y S, Han S S, Chun K S, Park K K, Park J H, Lee S K. et al .
Inhibitory effects of the ginsenoside Rg3 on phorbol ester-induced cyclooxygenase-2
expression, NF-kappaB activation and tumor promotion.
Mutat Res.
2003;
523 - 4
75-85
26
Park E K, Choo M K, Kim E J, Han M J, Kim D H.
Antiallergic activity of ginsenoside Rh2.
Biol Pharm Bull.
2003;
26
1581-4
27
Jongeneel C V.
Transcriptional regulation of the tumor necrosis factor alpha gene.
Immunobiology.
1995;
193
210-6
28
Lowenstein C J, Alley E W, Rava L P, Snowman A M, Snyder S H, Russell S W. et al
.
Macrophage nitric oxide synthase gene: two upstream regions mediate induction by interferon-γ
and lipopolysaccharide.
Proc Natl Acad Sci USA.
1993;
90
9730-4
29
Kim W K, Jang P G, Woo M S, Han I O, Pia H Z, Lee K. et al .
A new anti-inflammatory agent KL-1037 represses pro-inflammatory cytokine and inducible
nitric oxide synthase (iNOS) gene expression in activated microglia.
Neuropharmacology.
2004;
47
243-52
30
Fiorentino D F, Zlontnik A, Mossman T R, Howard M, O’Garra A.
Interlukin-10 inhibits cytokine production by activated macrophages.
J Immunol.
1991;
147
3815-22
31
Aloisi F, De Simone R, Columba-Cabezas S, Levi G.
Opposite effects of interferon-γ and prostaglandin E2 on tumor necrosis factor and
interlukin-10 production in microglia: a regulatory loop controlling microglia pro-
and anti-inflammatory activities.
J Neurosci Res.
1999;
56
571-80
Prof. Dr. Dong-Hyun Kim
College of Pharmacy
Kyung-Hee University
1 Hoegi
Dongdaemun-ku
Seoul 130-701
Korea
Fax: +82-2-957-5030
Email: dhkim@khu.ac.kr