RSS-Feed abonnieren
DOI: 10.1055/s-2006-939044
A General and Facile Synthetic Approach to N α-Boc Ureidoalanine Derivatives
Publikationsverlauf
Publikationsdatum:
14. März 2006 (online)

Abstract
We report a new and facile synthetic approach to N α-Boc ureidoalanine derivatives from commercially available Boc-l-aspartic acid. Not only N′-substituted but also N′,N′-disubstituted ureidoalanine derivatives may be obtained by this method. The key aspect of this method is the employment of a 5-oxazolidinone to provide proper protection of the α-nitrogen of l-aspartic acid. This ensures successful obtainment of the corresponding isocyanate by a Curtius rearrangement.
Key words
ureidoalanine - amino acids - protecting groups - 5-oxazolidinone - Curtius rearrangement
-
1a
Maruoka K.Ooi T. Chem. Rev. 2003, 103: 3013 -
1b
Ghost AK.Xu CX.Kulkarni SS.Wink D. Org. Lett. 2005, 7: 7 - 2
Gmelin R.Strass G.Hasenmaier G. Z. Naturforsch. B: Chem. Sci. 1958, 13: 252 -
3a
Fukuyasu H.Kawakami K.Sato Y.Ohya Z.Kikuchi T.Tsuruoka T.Inouye S. Meiji Seika Kenkyu Nenpo 1983, 22: 9 -
3b
Singh RP.Srivastava HS. Curr. Sci. 1987, 56: 93 -
4a
Piper JR.McCaleb GS.Montgomery JA.Schmid FA.Sirotnak FM. J. Med. Chem. 1985, 28: 1016 -
4b
Itoh F.Yoshioka Y.Yukishige K.Yoshida S.Ootsu K.Akimoto H. Chem. Pharm. Bull. 2000, 48: 1270 -
4c
Lherbet C.Morin M.Castonguay R.Keillor JW. Bioorg. Med. Chem. Lett. 2003, 13: 997 -
4d
Ishigaki T,Taniguchi K,Ito T,Ono H,Kaino M, andMeguro H. inventors; JP 2003277340. -
4e
Bernareggi A,Cassara PG,Chatterjee S,Ferreti E,Iqbal M,Menta E,Messina Mclaughlin PA, andOliva A. inventors; WO 2005021558. - 5
Sargent DR.Skinner CG. J. Med. Chem. 1971, 14: 465 - 6
Waki M.Kitajima Y.Izumiya N. Synthesis 1981, 266 - 7
Lee ES.Jurayj J.Cushman M. Tetrahedron 1994, 50: 9873 -
8a
Hartner FW.Cvetovich RJ.Tsay F.Amato JS.Pipik B.Grabowski EJJ.Reider PJ. J. Org. Chem. 1999, 64: 7751 -
8b
Khayer K.Jenn T.Akhtar M.John R.Gani D. Tetrahedron Lett. 2000, 41: 1637 - 9
Arttamangkul AS.Murray TF.DeLander GE.Aldrich JV. J. Med. Chem. 1995, 38: 2410 -
10a
Rudinger J.Poduska K.Zaoral M. Collect. Czech. Chem. Commun. 1960, 25: 2022 -
10b
Denis JN.Tchertchian S.Vallée Y. Synth. Commun. 1997, 27: 2345 -
10c
Martinez J.Oiry J.Imbach JL.Winternitz F. J. Med. Chem. 1982, 25: 178 -
11a
Englund EA.Gopi HN.Appella DH. Org. Lett. 2004, 6: 213 -
11b
Deng J.Hamada Y.Shioiri T. Tetrahedron Lett. 1996, 37: 2261 - 12
Scholtz JM.Bartlett PA. Synthesis 1989, 542 - 13
Guichard G.Semetey V.Didierjean C.Aubry A.Briand JP.Rodriguez M. J. Org. Chem. 1999, 64: 8702 - 15
Patil BS.Vasanthakumar GR.Suresh Babu VV. J. Org. Chem. 2003, 68: 7274 -
16a
Lee KI.Kim JH.Ko KY.Kim WJ. Synthesis 1991, 935 -
16b
Park M.Lee J.Choi J. Bioorg. Med. Chem. Lett. 1996, 6: 1297 -
17a
Olsen RK.Ramasamy K. J. Org. Chem. 1985, 50: 2264 -
17b
Ducrot P.Rabhi C.Thal C. Tetrahedron 2000, 56: 2683 -
17c
Esslinger CS.Cybulski KA.Rhoderick JF. Bioorg. Med. Chem. 2005, 13: 1111 - 19
Allevi P.Anastasia M. Tetrahedron Lett. 2003, 44: 7663
References and Notes
Typical Procedure for the Preparation of Compounds 9.
Compound 7 (10 mmol) was dissolved in dry THF (30 mL) and cooled to -15 °C. After addition of EtOCOCl (11 mmol) and NMM (12 mmol), the mixture was stirred for 20 min. A solution of NaN3 (25 mmol) in H2O (5 mL) was added and stirred for 1 h at -10 °C. The solution was then diluted with H2O and extracted with EtOAc (150 mL). The organic layers were washed with brine (2 × 10 mL), dried over Na2SO4 and concentrated under reduced pressure to give crude acyl azide. This crude acyl azide can be further purified by a flash column chromatography (PE-EtOAc, 2:1, R
f
= 0.7). Purified acyl azide was dissolved in toluene (30 mL) and the resulting solution was heated to 75 °C under stirring. After gas evolution had stopped the toluene was removed under reduced pressure to afford isocyanate 8 as clear oil. This isocyanate 8 was directly used in the next step without further purification. Amine (8 mmol) was added to a stirred suspension of isocyanate in CH2Cl2 (40 mL) at r.t. (when highly reactive amines are used, they should be dissolved in solvent and added dropwise). The solvent was removed under reduced pressure when the reaction was complete (detected by TLC) and the products were purified by a column chromatography.
Compound 9a: white foam; R
f
= 0.3 (EtOAc). [α]D
20 +65.8 (c 1, MeOH). 1H NMR (300 MHz, CDCl3): δ = 1.48 (s, 9 H), 3.62-3.82 (m, 2 H), 4.21 (br s, 1 H), 5.05 (s, 2 H, NH2), 5.19 (d, 1 H, J = 3.9 Hz), 5.38 (br s, 1 H), 5.90 (br s, 1 H, NH). 13C NMR (150 MHz, CDCl3): δ = 28.24, 40.22, 56.09, 78.43, 82.53, 152.12, 159.29, 171.99. MS: m/z = 259 [M+]. Anal. Calcd for C10H17N3O5: C, 46.33; H, 6.61; N, 16.21. Found: C, 46.57; H, 6.56; N, 16.11.
Compound 9h: white foam; R
f
= 0.6 (PE-EtOAc, 1:1); [α]D
20 +114.4 (c 1, MeOH). 1H NMR (300 MHz, CDCl3): δ = 1.48 (s, 9 H), 3.24 (s, 3 H), 3.58-3.76 (m, 1 H), 4.19 (s, 1 H), 4.64-4.80 (m, 1 H, NH), 5.09 (d, 1 H, J = 3.6 Hz), 5.38 (br s, 1 H), 7.21-7.42 (m, 5 H). 13C NMR (150 MHz, CDCl3): δ = 28.44, 37.50, 40.95, 55.05, 78.28, 82.51, 127.54, 127.83, 130.30, 143.09, 152.27, 157.09, 171.96. MS: m/z = 349 [M+]. Anal. Calcd for C17H23N3O5: C, 58.71; H, 6.70; N, 12.25. Found: C, 58.44; H, 6.64; N, 12.03.
Compound 9k: white foam; R
f
= 0.4 (PE-EtOAc, 1:1); [α]D
20 +140.2 (c 1, MeOH). 1H NMR (300 MHz, CDCl3): δ = 1.46 (s, 9 H), 3.50-3.72 (m, 2 H), 4.15-4.26 (m, 3 H), 5.06 (br s, 1 H), 5.32 (br s, 1 H), 5.53-5.64 (m, 2 H, NH), 7.19-7.25 (m, 5 H). 13C NMR (150 MHz, CDCl3): δ = 27.19, 39.29, 43.16, 54.51, 77.29, 81.31, 126.07, 126.28, 127.45, 138.36, 151.06, 157.33, 170.94. MS: m/z = 349 [M+]. Anal. Calcd for C17H23N3O5: C, 58.44; H, 6.64; N, 12.03. Found: C, 58.63; H, 6.34; N, 11.96.
Typical Procedure for the Preparation of Compounds 10.
Compound 9 (5 mmol) was dissolved in MeOH (20 mL) and 1 N NaOH (10 mL) was added. The mixture was stirred at r.t. till TLC indicated 9 was exhausted. Then, MeOH was removed under reduced pressure and the solution was washed with EtOAc (2 × 10 mL). The aqueous solution was then acidified to pH 2 with 1 N HCl and extracted with EtOAc (4 × 20 mL). The combined organic layers were washed with brine, dried over Na2SO4, filtered, and concentrated to give 10.
Compound 10a: white foam; yield 90%; [α]D
20 -13.2 (c 1, MeOH). 1H NMR (300 MHz, CDCl3): δ = 1.43 (s, 9 H), 3.49-3.74 (m, 2 H), 4.30 (br s, 1 H), 6.27 (br s, 2 H, NH2), 6.66 (br s, 1 H, NH). 13C NMR (150 MHz, CDCl3): δ = 28.32, 41.86, 54.42, 80.45, 156.22, 161.25, 174.20. MS: m/z = 247 [M+]. Anal. Calcd for C9H17N3O5: C, 43.72; H, 6.93; N, 17.00. Found: C, 43.97; H, 6.68; N, 17.23.
Compound 10h: white foam; yield 92%; [α]D
20 -1.3 (c 1, MeOH). 1H NMR (300 MHz, CDCl3): δ = 1.42 (s, 9 H), 3.25 (s, 3 H), 3.48-3.63 (m, 2 H), 4.20 (br s, 1 H), 5.02 (br s, 1 H, NH), 5.92 (br s, 1 H), 7.23-7.43 (m, 5 H). 13C NMR (150 MHz, CDCl3): δ = 28.51, 37.75, 43.13, 55.18, 80.45, 127.53, 127.95, 130.34, 142.76, 156.39, 158.43, 172.90. MS:
m/z = 337 [M+]. Anal. Calcd for C16H23N3O5: C, 56.96; H, 6.87; N, 12.46. Found: C, 60.24; H, 7.16; N, 12.23.
Compound 10k: white foam; yield 95%; [α]D
20 -1.4 (c 1, MeOH). 1H NMR (300 MHz, CDCl3): δ = 1.37 (s, 9 H), 3.45-3.54 (m, 2 H), 4.16-4.30 (m, 3 H), 6.05-6.32 (br, 2 H, NH), 7.21-7.26 (m, 5 H), 8.19 (br, 1 H, NH). 13C NMR (150 MHz, CDCl3): δ = 28.27, 42.33, 44.29, 55.08, 80.53, 127.18 127.35, 128.53, 138.83, 156.37, 159.77, 173.63. MS:
m/z = 337 [M+]. Anal. Calcd for C16H23N3O5: C, 56.96; H, 6.87; N, 12.46. Found: C, 60.17; H, 7.13; N, 12.65.