Subscribe to RSS
DOI: 10.1055/s-2006-939062
A Convenient Method to Aniline Compounds Using Microwave-Assisted Transfer Hydrogenation
Publication History
Publication Date:
24 April 2006 (online)

Abstract
The reduction of mononitro and dinitro aromatic compounds to their aniline analogues using microwave-assisted transfer hydrogenation has been demonstrated. The optimised conditions used, with some examples, are described herein.
Key words
microwave - transfer hydrogenation - nitroaromatic - anilines
- 1
Knifton JF. J. Org. Chem. 1976, 41: 1200 -
2a
Onopchenko A.Sabourin ET.Selwitz CM. J. Org. Chem. 1979, 44: 1233 -
2b
Knifton JF. Tetrahedron Lett. 1975, 26: 2163 - 3
Love C.McQuillin FJ. J. Chem. Soc., Perkin Trans. 1 1973, 2509 - 4
Onopchenko A.Sabourin ET.Selwitz CM. J. Org. Chem. 1979, 44: 1233 -
5a
Secrist JA.Logue MW. J. Org. Chem. 1972, 37: 335 -
5b
Rogers ME.Averill BA. J. Org. Chem. 1986, 51: 3308 -
5c
Nakano M.Sato Y. J. Org. Chem. 1987, 52: 1844 -
5d
Lee M.Lown JW. J. Org. Chem. 1987, 52: 5717 -
5e
Manabe K.Okamura K.Date T.Koga K. J. Org. Chem. 1993, 58: 6692 -
5f
Sleath PR.Noar JB.Eberlein GA.Bruice TC. J. Am. Chem. Soc. 1985, 107: 3328 -
5g
Evans DA.Miller SJ.Ennis MD. J. Org. Chem. 1993, 58: 471 -
5h
Mukkanti K.Subba Rao YV.Choudary BM. Tetrahedron Lett. 1989, 30: 251 -
6a
Adams R.Cohen FL. Org. Synth. Coll. Vol. I 1941, 240 -
6b
Skiles JW.Cava MP. J. Org. Chem. 1979, 44: 409 -
6c
Wetherill RB.Brown HC.Sivasankaran K. J. Am. Chem. Soc. 1962, 84: 2828 -
7a
Natelson S.Gottfried SP. J. Am. Chem. Soc. 1939, 61: 1001 -
7b
Sheehan M.Cram DJ. J. Am. Chem. Soc. 1969, 91: 3544 -
7c
Doxsee KM.Feigel M.Stewart KD.Canary JW.Knobler CB.Cram DJ. J. Am. Chem. Soc. 1987, 109: 3098 -
7d
Schiemann G.Pillarsky R. Chem. Ber. 1929, 62: 3035 -
8a
Wentland MP.Kullnig RK.Tham FS. J. Org. Chem. 1991, 56: 4706 -
8b
Mahood SA.Schaffner PVL. Org. Synth,. Coll. Vol. II 1943, 160 -
8c
Fox BA.Threlfall TL. Org. Synth., Coll. Vol. V 1973, 346 - 9
Subba Rao NV.Ratnam CV. Proc. Indian Acad. Sci., Sect. A 1956, 44: 331 -
10a
Linstead RP.Braude EA.Wooldridge KRH. J. Chem. Soc. 1954, 3586 -
10b
Entwistle ID.Johnstone RAW.Povall TJ. J. Chem. Soc., Perkin Trans. 1 1975, 1300 -
10c
Yeh M.Tang F.Chen S.Liu W.Lin L. J. Org. Chem. 1994, 59: 754 -
11a
Frisch KC.Taylor Bogert M. J. Org. Chem. 1943, 8: 331 -
11b
Lyli RE.Lamattina JL. Synthesis 1974, 726 -
11c
Theodoridis G.Manfredi MC.Krebs JD. Tetrahedron Lett. 1990, 31: 6141 -
12a
Wong JC.Wen-Ben Y.Chung-Ming S. Synlett 2003, 1688 -
12b
Bendale PM.Chung-Ming S. J. Comb. Chem. 2002, 4: 359 -
12c
Kamal A.Srinivasa Reddy K.Rajendra Prasad B.Hari Babu A.Venkata Ramana A. Tetrahedron Lett. 2004, 45: 6517 - 13
Ravi Kanth S.Venkat Reddy G.Rama Rao VVVNS.Maitraie D.Narsaiah B.Shanthan Rao P. Synth. Commun. 2002, 32: 2849 - 14
Lidstrom P.Tierney J.Wathey B.Westman J. Tetrahedron 2001, 57: 9225
References and Notes
Each isomer was separated and characterised by 1H NMR and 13C NMR spectroscopy. For each isomer, an NOE was observed between the NH2 and the aromatic proton.
16The conversion of 2-[(E)-2-(4-pyridinyl)ethenyl]aniline to the 2-[2-(4-pyridinyl)ethyl]aniline required microwave conditions of 180 °C, 120 min in EtOH.
17
3-(Ethyloxy)-4-nitroaniline.
Synthesised using heating time of 3 min. 1H NMR [400 MHz, (CD3)2SO]: δ = 1.35 (t, J = 8 Hz, 3 H, CH3), 4.05 (q, J = 8 Hz, 2 H, CH2), 6.18 (d, J = 8 Hz, 1 H, ArH), 6.24 (s, 1 H, ArH), 6.53 (br s, 2 H, NH2), 7.78 (d, J = 8 Hz, 1 H, ArH), 7.71 (d, J = 8 Hz, ArH). 13C NMR [75 MHz, (CD3)2SO]: δ = 14.8, 64.5, 96.9, 105.9, 127.2, 129.3, 156.3, 156.5. MS (EI, 70 eV): m/z (%) = 182.97 (100). HRMS-FAB: m/z calcd for C8H10N2O3 [M + H]+: 183.0770; found: 183.0775.
2-(Ethyloxy)-4-nitroaniline.
Synthesised using heating time of 3 min. 1H NMR [400 MHz, (CD3)2SO]: δ = 1.37 (t, J = 8 Hz, 3 H, CH3), 4.10 (q, J = 8 Hz, 2 H, CH2), 6.40 (br s, 2H, NH2), 6.64 (d, J = 8 Hz, 1 H, ArH), 7.54 (s, 1 H, ArH), 7.71 (d, J = 8 Hz, ArH). 13C NMR [75 MHz, (CD3)2SO]: δ = 14.5, 63.9, 106.3, 110.8, 119.6, 135.4, 143.6, 146.1. MS (EI, 70 eV): m/z (%) = 182.85 (100). HRMS-FAB: m/z calcd for C8H10N2O3 [M + H]+: 183.0770; found: 183.0775.
2-[(
E
)-2-(4-pyridinyl)ethenyl]aniline.
Synthesised using heating time of 90 min. 1H NMR [400 MHz, (CD3)2SO]: δ = 5.51 (s, 2 H, NH2), 6.55 (t, J = 4 Hz, 1 H, ArH), 6.65 (d, J = 8 Hz, 1 H, ArH), 6.96 (d, J = 16 Hz, 1 H, CH), 7.01 (m, 1 H, ArH), 7.47 (d, J = 8 Hz, 1 H, ArH), 7.57 (br d, J = 4 Hz, 2 H, ArH), 7.67 (d, J = 16 Hz, 1 H, CH), 8.51 (br s, 2 H, ArH). 13C NMR (75 MHz, CDCl3): δ = 115.7, 116.6, 119.4, 120.61, 123.7, 125.7, 128.8, 129.5, 145.1, 146.3, 149.2. MS (EI, 70 eV): m/z (%) = 197.0 (100). HRMS-FAB: m/z calcd for C13H13N2 [M + H]+: 197.1083; found: 197.1079.
1
H
-Indazol-6-amine
Synthesised using heating time of 15 min. 1H NMR [400 MHz, (CD3)2SO]: δ = 5.18 (s, 2 H, NH2), 6.48 (dd, J = 8, 4 Hz, 1 H, ArH), 6.50 (s, 1 H, CH), 7.35 (d, J = 8 Hz, 1 H, ArH), 7.71 (s, 1 H, ArH) 12.3 (s, NH). 13C NMR (75 MHz, CDCl3): δ = 89.6, 111.5, 114.7, 119.7, 132.3, 141.1, 146.8. MS (EI, 70 eV): m/z (%) = 134.02 [M + H]+ (100). HRMS-FAB: m/z calcd for C7H7N3 [M + H]+: 134.0717; found: 134.0718.