Abstract
In the course of our investigations directed towards an asymmetric copper-catalyzed
silyl transfer from bis(triorganosilyl) zincs onto α,β-unsaturated carbonyl compounds,
the presence of Lewis acidic lithium cations and the uncatalyzed background reaction
were identified as major causes thwarting appreciable enantioselection. The latter
finding underlines once more that copper is often not even required in the conjugate
addition of bis(triorganosilyl) zincs and tris(triorganosilyl) zincates alike.
Key words
catalysis - cuprates - silicon - zinc - copper
References
<A NAME="RC01006SS-1">1 </A>
Brook MA.
Silicon in Organic, Organometallic and Polymer Chemistry
Wiley;
New York:
2000.
<A NAME="RC01006SS-2">2 </A>
Jones GR.
Landais Y.
Tetrahedron
1996,
52:
7599
<A NAME="RC01006SS-3">3 </A>
Hatanaka Y.
Hiyama T.
J. Am. Chem. Soc.
1990,
112:
7793
<A NAME="RC01006SS-4A">4a </A>
Lipshutz BH. In
Organometallics in Synthesis: A Manual
Schlosser M.
Wiley-VCH;
Weinheim:
2002.
p.665
<A NAME="RC01006SS-4B">4b </A>
Dieter RK. In
Modern Organocopper Chemistry
Krause N.
Wiley-VCH;
Weinheim:
2002.
p.79
<A NAME="RC01006SS-4C">4c </A>
Fleming I. In
Organocopper Reagents: A Practical Approach
Taylor RJK.
Oxford Academic Press;
New York:
1994.
p.257
<A NAME="RC01006SS-4D">4d </A>
Tamao K.
Kawachi A.
Adv. Organomet. Chem.
1995,
38:
1
<A NAME="RC01006SS-5A">5a </A>
Ager DJ.
Fleming I.
J. Chem. Soc., Chem. Commun.
1978,
177
<A NAME="RC01006SS-5B">5b </A>
Ager DJ.
Fleming I.
Patel SK.
J. Chem. Soc., Perkin Trans. 1
1981,
2520
<A NAME="RC01006SS-5C">5c </A>
Fleming I.
Newton TW.
J. Chem. Soc., Perkin Trans. 1
1984,
1805
<A NAME="RC01006SS-5D">5d </A>
Lipshutz BH.
Reuter DC.
Ellsworth EL.
J. Org. Chem.
1989,
54:
4975
<A NAME="RC01006SS-5E">5e </A>
Amberg W.
Seebach D.
Chem. Ber.
1990,
123:
2439
<A NAME="RC01006SS-5F">5f </A>
Tamao K.
Kawachi A.
Ito Y.
J. Am. Chem. Soc.
1992,
114:
3989
<A NAME="RC01006SS-6A">6a </A>
Dambacher J.
Bergdahl M.
Chem. Commun.
2003,
144
<A NAME="RC01006SS-6B">6b </A>
Dambacher J.
Bergdahl M.
J. Org. Chem.
2005,
70:
580
<A NAME="RC01006SS-7">7 </A>
Lipshutz BH.
Sclafani JA.
Takanami T.
J. Am. Chem. Soc.
1998,
120:
4021
<A NAME="RC01006SS-8">8 </A>
Oestreich M.
Weiner B.
Synlett
2004,
2139
<A NAME="RC01006SS-9A">9a </A>
Ito H.
Ishizuka T.
Tateiwa J.-i.
Sonoda M.
Hosomi A.
J. Am. Chem. Soc.
1998,
120:
11196
<A NAME="RC01006SS-9B">9b </A>
Clark CT.
Lake JF.
Scheidt KA.
J. Am. Chem. Soc.
2004,
126:
84
<A NAME="RC01006SS-10A">10a </A>
Tückmantel W.
Oshima K.
Nozaki H.
Chem. Ber.
1986,
119:
1581
<A NAME="RC01006SS-10B">10b </A>
Crump RANC.
Fleming I.
Urch CJ.
J. Chem. Soc., Perkin Trans. 1
1994,
701
<A NAME="RC01006SS-10C">10c </A>
Vaughan A.
Singer RD.
Tetrahedron Lett.
1995,
36:
5683
<A NAME="RC01006SS-10D">10d </A>
MacLean BL.
Hennigar KA.
Kells KW.
Singer RD.
Tetrahedron Lett.
1997,
38:
7313
<A NAME="RC01006SS-11A">11a </A>
Oppolzer W.
Mills RJ.
Pachinger W.
Stevenson T.
Helv. Chim. Acta
1986,
69:
1542
<A NAME="RC01006SS-11B">11b </A>
Fleming I.
Kindon ND.
J. Chem. Soc., Chem. Commun.
1987,
1177
<A NAME="RC01006SS-11C">11c </A>
Palomo C.
Aizpurua JM.
Iturburu M.
Urchegui R.
J. Org. Chem.
1994,
59:
240
<A NAME="RC01006SS-11D">11d </A>
Hale MR.
Hoveyda AH.
J. Org. Chem.
1994,
59:
4370
<A NAME="RC01006SS-11E">11e </A>
Fleming I.
Kindon N.
J. Chem. Soc., Perkin Trans. 1
1995,
303
<A NAME="RC01006SS-12A">12a </A>
Hayashi T.
Matsumoto Y.
Ito Y.
Tetrahedron Lett.
1988,
29:
4147
<A NAME="RC01006SS-12B">12b </A>
Ogoshi S.
Tomiyasu S.
Morita M.
Kurosawa H.
J. Am. Chem. Soc.
2002,
124:
11598
<A NAME="RC01006SS-13A">13a </A>
Hayashi T.
Matsumoto Y.
Ito Y.
J. Am. Chem. Soc.
1988,
110:
5579
<A NAME="RC01006SS-13B">13b </A>
Matsumoto Y.
Hayashi T.
Ito Y.
Tetrahedron
1994,
50:
335
<A NAME="RC01006SS-14">14 </A>
Feringa BL.
Naasz R.
Imbos R.
Arnold LA. In
Modern Organocopper Chemistry
Krause N.
Wiley-VCH;
Weinheim:
2002.
p.224
<A NAME="RC01006SS-15">15 </A>
Arnold LA.
Imbos R.
Mandoli A.
de Vries AHM.
Nasz R.
Feringa BL.
Tetrahedron
2000,
56:
2865
<A NAME="RC01006SS-16">16 </A>
Gilman H.
Lichtenwalter GD.
J. Am. Chem. Soc.
1958,
80:
608
<A NAME="RC01006SS-17">17 </A>
Auer G.
Oestreich M.
Chem. Commun.
2006,
311
<A NAME="RC01006SS-18">18 </A>
Fürstner A.
Weidmann H.
J. Organomet. Chem.
1988,
354:
15
<A NAME="RC01006SS-19">19 </A>
Analytical HPLC analysis on a chiral stationary phase using a Daicel Chiralpak AD
column (n -heptane-i -PrOH, 99:1 at 25 °C) provided baseline separation of enantiomers of 2 : 9.69 min (minor enantiomer) and 10.8 min (major enantiomer).
<A NAME="RC01006SS-20">20 </A>
The low yield of 20% is in part due to the small scale, on which extremely air- and
moisture-sensitive KC8 was handled.
<A NAME="RC01006SS-21A">21a </A>
Weiner B.
Diploma Thesis
Albert-Ludwigs-Universität Freiburg;
Freiburg, Germany:
2004.
<A NAME="RC01006SS-21B">21b </A>
Auer G.
PhD Dissertation
Albert-Ludwigs-Universität Freiburg;
Freiburg, Germany:
2006.
<A NAME="RC01006SS-22">22 </A>
Okuda Y.
Wakamatsu K.
Tückmantel W.
Oshima K.
Nozaki H.
Tetrahedron Lett.
1985,
26:
4629
<A NAME="RC01006SS-23">23 </A>
Oestreich M.
Auer G.
Adv. Synth. Catal.
2005,
347:
637