Synthesis 2006(15): 2543-2550  
DOI: 10.1055/s-2006-942480
PAPER
© Georg Thieme Verlag Stuttgart · New York

The HF/BF3-Catalysed Reaction of Substituted Benzenes with Carbon Monoxide­

J. Alexander Willemse*a, Barend C. B. Bezuidenhoudta, Cedric W. Holzapfelb
a Sasol Technology R&D, PO Box 1, Sasolburg, 1947, South Africa
Fax: +27(11)5224998; e-Mail: alex.willemse@sasol.com; Fax: +27(11)5223274; e-Mail: ben.bezuidenhoudt@sasol.com;
b Department of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg, 2006, South Africa
e-Mail: cwh@rau.ac.za;
Further Information

Publication History

Received 10 February 2006
Publication Date:
11 July 2006 (online)

Abstract

The HF/BF3-catalysed reactions of phenol and anisole as well as substituted benzenes with CO were investigated as possible routes to commercially important aldehydes.

The results confirmed that HF and BF3 are required in (at least) stoi­chiometric amounts for effective formylation with CO. With the aim of effecting truly catalytic reaction conditions, the formylation reactions were carried out in ionic liquids. It was shown that phenol is a good substrate for formylation in certain ionic liquids.

    References

  • 1 Maliverney C. Mulhauser M. Kirk-Othmer Encyclopedia of Chemical Technology   4th ed., Vol. 13:  Howe-Grant M. John Wiley; New York: 1994.  p.1030-1042  
  • 2 Fiege H. Ullmann’s Encyclopedia of Industrial Chemistry   6th ed.:  Wiley-VCH; Weinheim: 2002. electronic release
  • 3 Bauer K. Garbe D. Surburg H. Ullmann’s Encyclopedia of Industrial Chemistry   6th ed.:  Wiley-VCH; Weinheim: 2002. electronic release
  • 4 Imamura J. Yuki Gusei Kagaku Kyokaishi  1979,  37:  667 ; Chem. Abstr. 1980, 92, 6158
  • 5 Degner D, Barl M, and Siegel H. inventors;  (BASF, AG) German Patent DE 2848397.  1980; Chem. Abstr. 1980, 93, 56963
  • 6b Takezaki Y. Sugita N. Teranishi H. Kudo K. Inoue A. Bull. Jpn. Petrol. Inst.  1967,  9:  45 
  • 6c Takezaki Y. Sugita N. Kudo K. Teranishi H. Sekiyu Gakkaishi  1968,  11:  690 
  • 6d Takezaki Y. Sugita N. Kogyo Kagaku Zasshi  1966,  69:  907 
  • 6e Fujiyama S. Kasahara T. Hydrocarbon Process.  1978,  57:  147 
  • 7 March J. Advanced Organic Chemistry   3rd ed.:  John Wiley & Sons; New York: 1985.  p.488 
  • 8a Weisse L, Neunteufel R, and Strutz H. inventors;  (Hoechst, AG) Eur. Pat. Appl. EP 599148A1.  1994; Chem. Abstr. 1995, 121, 82714
  • 8b Colquhoun HM. Thompson DJ. Twigg MV. Carbonylation: Direct Synthesis of Carbonyl Compounds   Plenum Press; New York and London: 1991. 
  • 9a Olah GA. Pelizza F. Kobayashi S. J. Am. Chem. Soc.  1976,  98:  296 
  • 9b Olah GA. Ohannesian L. Arvanaghi M. Chem. Rev.  1987,  87:  671 
  • 10 Saint-Jalmes L. Rochin C. Janin R. Morel M. Industrial Chemistry Library 8, Roots of Organic Development   Desmurs J.-R. Ratton S. Elsevier; Amsterdam: 1996.  p.325-335  
  • 12 Tanaka M. Iyoda J. Souma Y. J. Org. Chem.  1992,  57:  2677 
  • 13a Wasserscheid P. Keim W. Angew. Chem. Int. Ed.  2000,  39:  3772 
  • 13b Holbrey JD. Seddon KR. Clean Prod. Processes  1999,  1:  223 
  • 13c Carlin RT. Wilkes JS. Chemistry of Nonaqueous Solutions   VCH; Weinheim: 1994.  p.277 
  • 15 Fujiyama S, Takahashi T, Takagawa M, and Ozao S. inventors;  (Mitsubishi Gas Chemical Co.) German Patent DE 2558164.  1976; Chem. Abstr. 1978, 86, 29490
  • 16a Eynde JJV. Mailleux I. Synth. Commun.  2001,  31:  1 
  • 16b Tiemann H. Ber. Dtsch. Chem. Ges.  1877,  10:  68 
  • 17a Irvine JCS. J. Chem. Soc.  1901,  79:  669 
  • 17b Tamayo L. Panizo M. An. R. Soc. Esp. Fis. Quim.  1944,  40:  394 
  • 17c Golodnyuk TI. Vinogradova VI. Yunusov MS. Chem. Nat. Compd. (Engl. Transl.)  1990,  26:  232 
  • 17d Syper L. Synthesis  1989,  167 
  • 18a Wittig G. Gaub W. Chem. Ber.  1947,  80:  363 
  • 18b Giacco TD. Baciocchi E. Lanzalunga O. Elisei F. Chem. Eur. J.  2001,  7:  3005 
  • 19a Nystrom RF. Berger CRA. J. Am. Chem. Soc.  1958,  80:  2896 
  • 19b Horning EC. Parker JA. J. Am. Chem. Soc.  1952,  74:  3870 
  • 20a Kauffmann H. Pannwitz P. Chem. Ber.  1912,  45:  771 
  • 20b Singh S. Chhina S. Sharma VK. Sachdev S. J. Chem. Soc., Chem. Commun.  1982,  453 
  • 20c Baeyer A. Villiger V. Ber. Dtsch. Chem. Ges.  1902,  35:  1210 
  • 21a Matsuura A. Ito Y. Matsuura T. J. Org. Chem.  1985,  50:  5002 
  • 21b Nishikido J. Kamishima M. Matsuzawa H. Mikami K. Tetrahedron  2002,  58:  8345 
  • 22a Dochnahl M. Doux M. Faillard E. Ricard L. Floch P. Eur. J. Inorg. Chem.  2005,  125 
  • 22b Srivastava N. Kumar A. Dwivedy I. Ray S. Synth. Commun.  1997,  27:  2877 
  • 23 Catalysis of organic reactions: Olivier H. Chauvin Y. Chem. Ind. (London)  1996,  249 
  • 24 Seddon KR. J. Chem. Technol. Biotechnol.  1997,  68:  351 
  • 25 Xu D. Liu B. Luo S. Xu Z. Shen Y. Synthesis  2003,  2626 
  • 26 Zhu Y. Bahnmueller S. Hosmane NS. Maguire JA. Chem. Lett.  2003,  32:  730 
  • 27a Howarth J. Tetrahedron Lett.  2000,  41:  6627 
  • 27b Shen Z. Ji S. Loh T. Tetrahedron Lett.  2005,  46:  3137 
  • 28a Fitchett BD. Rollins JB. Conboy JC. J. Electrochem. Soc.  2005,  152:  E251-E258  
  • 28b Mukhopadhyay I. Aravinda CL. Borissov D. Freyland W. Electrochim. Acta  2005,  50:  1275 
  • 28c Crosthwaite JM. Ropel LJ. Anthony JL. Aki Sudhir NVK. Maginn EJ. Brennecke JF. In Ionic Liquids IIIA: Fundamentals, Progress, Challenges, and Opportunities; Rogers R. D. Seddon K. R. ACS Symposium Series 901, American Chemical Society; Washington, DC: 2005.  p.292 
11

Although care should be taken in the handling of the highly reactive alcohol 16, it could be prepared in almost quantitative yield via NaBH3 reduction of the corresponding ketone.

14

Sasol Technology R&D, 2001, unpublished results.