References and Notes
1 Present address: Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
2a
Bailon P.
Berthold W.
Pharm. Sci. Technol. Today
1998,
352
2b
Veronese FM.
Biomaterials
2001,
405
2c
Pasut G.
Veronese FM.
Adv. Polym. Sci.
2006,
95
3
Dreborg S.
Akerblom EB.
Crit. Rev. Ther. Drug Carrier Syst.
1990,
315
4 Smaller PEG units (MW <500), also referred to as oligoethylene glycol (OEG), often are employed as spacers; see, for example: Engel A.
Chatterjee SK.
Al-Arifi A.
Riemann D.
Langner J.
Nuhn P.
Pharm. Res.
2003,
51
For recent examples, see:
5a
Chen H.
Chen Y.
Sheardown H.
Brook MA.
Biomaterials
2005,
7418
5b
Otsuka H.
Nagasaki Y.
Kataoka A.
Langmuir
2004,
11285
5c
Manta C.
Ferraz N.
Betancor L.
Antunes G.
Batista-Viera F.
Carlsson J.
Caldwell K.
Enzyme Microb. Technol.
2003,
890
For recent reviews, see:
6a
Kichler A.
J. Gene Med.
2004,
S3
6b
Kircheis R.
Wightman L.
Wagner E.
Adv. Drug Delivery Rev.
2001,
341
7
Kleemann E.
Neu M.
Jekel N.
Fink L.
Schmehl T.
Gessler T.
Seeger W.
Kissel T.
J. Controlled Release
2005,
299
8
Kim WJ.
Yockman JW.
Lee M.
Jeong LH.
Kim Y.-H.
Kim SW.
J. Controlled Release
2005,
224
9
Roberts MJ.
Bentley MD.
Harris JM.
Adv. Drug Delivery Rev.
2002,
459
10
Engel A.
Chatterjee SK.
Al-Arifi A.
Nuhn P.
J. Pharm. Sci.
2003,
2229
11
Loiseau FA.
Hii KK.
Hill AM.
J. Org. Chem.
2004,
639
12
Goodson RJ.
Katre NV.
Biotechnology (N.Y.)
1990,
8:
343
13
Morpurgo M.
Veronese FM.
Kachensky D.
Harris JM.
Bioconjugate Chem.
1996,
7:
363
14
Woghiren C.
Sharma B.
Stein S.
Bioconjugate Chem.
1993,
4:
314
15
Tumelty D.
Carnevali M.
Miranda LP.
J. Am. Chem. Soc.
2003,
14238
16a
Lemieux GA.
Yarema KJ.
Jacobs CL.
Bertozzi CR.
J. Am. Chem. Soc.
1999,
4278
16b
Sadamoto R.
Niikura K.
Ueda T.
Monde K.
Fukuhara N.
Nishimura S.-I.
J. Am. Chem. Soc.
2004,
3755
17
Perouzel E.
Jorgensen MR.
Keller M.
Miller AD.
Bioconjugate Chem.
2003,
14:
884
18
Bertozzi CR.
Bednarski MD.
J. Org. Chem.
1991,
4326
19 For moisture-sensitive reactions, optimized yields were obtained only after drying the PEG intermediate by toluene azeotropic distillation immediately prior to use.
20a
Grochowski E.
Jurczak J.
Synthesis
1976,
682
20b
Nicolaou KC.
Groneberg RD.
J. Am. Chem. Soc.
1990,
4085
20c
Su S.
Giguere JR.
Schaus SE.
Porco JA.
Tetrahedron
2004,
8645
21
Appel R.
Angew. Chem., Int. Ed. Engl.
1975,
14:
801
22
1H NMR and 13C NMR data (300 MHz and 75 MHz, respectively; in CDCl3) for all compounds: Compound 1a: 1H NMR: δ = 7.23 (br s, 1 H), 4.03 (m, 2 H), 3.82 (t, J = 6.3 Hz, 2 H), 3.74 (m, 2 H), 3.69 (app. s, 4 H), 3.48 (t, J = 6.3 Hz, 2 H), 1.48 (s, 9 H). 13C NMR: δ = 156.7, 81.7, 75.4, 71.2, 70.5, 70.4, 69.4, 30.2, 28.2.
Compound 1b: 1H NMR: δ = 7.59 (br s, 1 H), 4.03 (m, 2 H), 3.82 (t, J = 6.3 Hz, 2 H), 3.70-3.66 (m, 8 H), 3.48 (t, J = 6.3 Hz, 2 H), 1.48 (s, 9 H). 13C NMR: δ = 156.7, 81.5, 75.3, 71.2, 70.6 (3 C), 70.5, 69.3, 30.2, 28.2.
Compound 3a: 1H NMR: δ = 7.70-7.67 (m, 4 H), 7.44-7.35 (m, 6 H), 3.82 (t, J = 5.4 Hz, 2 H), 3.73-3.70 (m, 2 H), 3.66 (app. s, 4 H), 3.63 (m, 4 H), 2.17 (br s, 1 H), 1.05 (s. 9 H). 13C NMR: δ = 135.6, 133.6, 129.6, 127.6, 72.5, 70.8, 70.5, 63.4, 61.8, 26.8, 19.2.
Compound 3b: 1H NMR: δ = 7.70-7.67 (m, 4 H), 7.44-7.35 (m, 6 H), 3.82 (t, J = 5.4 Hz, 2 H), 3.73-3.70 (m, 2 H), 3.66-3.58 (m, 12 H), 2.25 (br s, 1 H), 1.05 (s, 9 H). 13C NMR: δ = 135.6, 133.6, 129.6, 127.6, 72.5, 72.4, 70.7, 70.7, 70.4, 63.4, 61.8, 26.8, 19.2.
Compound 4a: 1H NMR: δ = 7.83-7.80 (m, 2 H), 7.72-7.70 (m, 2 H), 7.70-7.65 (m, 4 H), 7.44-7.35 (m, 6 H), 4.36 (m, 2 H), 3.86 (m, 2 H), 3.74 (t, J = 5.4 Hz, 2 H), 3.65-3.62 (m, 2 H), 3.58-3.56 (m, 2 H), 3.52 (t, J = 5.4 Hz, 2 H), 1.03 (s, 9 H). 13C NMR: δ = 163.4, 135.6, 134.4, 133.7, 129.6, 129.0, 127.6, 123.4, 77.2, 72.4, 70.8, 70.7, 69.4, 63.3, 26.8, 19.2.
Compound 4b: 1H NMR: δ = 7.84-7.81 (m, 2 H), 7.74-7.71 (m, 2 H), 7.70-7.66 (m, 4 H), 7.44-7.34 (m, 6 H), 4.36 (m, 2 H), 3.85 (m, 2 H), 3.79 (t, J = 5.4 Hz, 2 H), 3.67-3.63 (m, 2 H), 3.61-3.52 (m, 8 H), 1.04 (s, 9 H). 13C NMR: δ = 163.4, 135.6, 134.4, 133.7, 129.6, 129.0, 127.6, 77.2, 72.4, 70.8, 70.7, 70.6, 70.5, 69.3, 63.4, 26.8, 19.2.
Compound 5a: 1H NMR: δ = 7.70-7.67 (m, 4 H), 7.44-7.35 (m, 6 H), 3.84 (m, 2 H), 3.81 (t, J = 5.4 Hz, 2 H), 3.69-3.59 (m, 8 H), 1.05 (s, 9 H). 13C NMR: δ = 135.6, 133.6, 129.6, 127.6, 74.7, 72.4, 70.7, 70.6, 69.7, 63.4, 26.8, 19.2.
Compound 5b: 1H NMR: δ = 7.70-7.67 (m, 4 H), 7.44-7.35 (m, 6 H), 3.85 (m, 2 H), 3.81 (t, J = 5.4 Hz, 2 H), 3.69-3.63 (m, 10 H), 3.60 (t, J = 5.4 Hz, 2 H), 1.05 (s, 9 H). 13C NMR: δ = 135.6, 133.6, 129.6, 127.6, 74.6, 72.4, 70.7, 70.6, 70.5, 70.5, 69.7, 63.4, 26.8, 19.2.
Compound 6a: 1H NMR: δ = 7.70-7.67 (m, 4 H), 7.51 (br s, 1 H), 7.44-7.34 (m, 6 H), 4.01 (m, 2 H), 3.82 (t, J = 5.4 Hz, 2 H), 3.72 (m, 2 H), 3.68-3.62 (m, 4 H), 3.61 (t, J = 5.4 Hz, 2 Hz), 1.46 (s, 9 H), 1.05 (s, 9 H). 13C NMR: δ = 156.7, 135.6, 133.6, 129.6, 127.6, 81.5, 75.3, 72.4, 70.7, 70.6, 69.4, 63.4, 28.2, 26.8, 19.2.
Compound 6b: 1H NMR: δ = 7.70-7.67 (m, 4 H), 7.62 (br s, 1 H), 7.44-7.34 (m, 6 H), 4.01 (m, 2 H), 3.81 (t, J = 5.4 Hz, 2 H), 3.70 (m, 2 H), 3.67-3.62 (m, 8 H), 3.60 (t, J = 5.4 Hz, 2 H), 1.46 (s, 9 H), 1.05 (s, 9 H). 13C NMR: δ = 156.7, 135.6, 133.6, 129.6, 127.6, 81.4, 75.3, 72.3, 70.7, 70.6, 70.5, 70.5, 69.2, 63.4, 28.2, 26.8, 19.1.
Compound 7a: 1H NMR: δ = 7.82 (br s, 1 H), 4.03 (m, 2 H), 3.76-3.72 (m, 4 H), 3.69 (s, 4 H), 3.64-3.61 (m, 4 H), 2.84 (br s, 1 H), 1.48 (s, 9 H). 13C NMR: δ = 156.8, 81.6, 75.2, 72.6, 70.4, 70.2, 69.2, 61.6, 28.2.
Compound 7b: 1H NMR: δ = 8.08 (br s, 1 H), 4.02 (m, 2 H), 3.74-3.66 (m, 12 H), 3.63 (m, 2 H), 2.80 (br s, 1 H), 1.48 (s, 9 H). 13C NMR: δ = 156.9, 81.4, 75.1, 72.6, 70.6, 70.4, 70.4, 70.3, 69.0, 61.7, 28.2.
23
Gaertner HF.
Offord RE.
Bioconjugate Chem.
1996,
7:
38
24 Compound 9 was obtained as a single isomer: 1H NMR (600 MHz, CDCl3): δ = 8.13 (s, 1 H), 7.58-7.57 (m, 2 H), 7.38-7.36 (m, 3 H), 4.34 (t, J = 4.6 Hz, 2 H), 3.83-3.81 (m, 4 H), 3.70 (app. s, 4 H), 3.46 (t, J = 6.0 Hz, 2 H). 13C NMR (75 MHz, CDCl3): δ = 149.0, 132.2, 129.8, 128.7, 127.0, 73.5, 71.2, 70.7, 70.5, 69.7, 30.3.