Synthesis 2006(21): 3625-3630  
DOI: 10.1055/s-2006-950287
PAPER
© Georg Thieme Verlag Stuttgart · New York

Catalyzed Enantioselective Synthesis of Allyl Alcohols from Aldehydes and Alkenylboronic Acids

Frank Schmidt, Jens Rudolph, Carsten Bolm*
Institut für Organische Chemie der RWTH Aachen, Landoltweg 1, 52074 Aachen, Germany
e-Mail: Carsten.Bolm@oc.rwth-aachen.de;
Further Information

Publication History

Received 3 August 2006
Publication Date:
09 October 2006 (online)

Abstract

Enantiomerically enriched (E)-allyl alcohols can be prepared in good yields by asymmetric alkenylation of aldehydes with alkenylboronic acids catalyzed by a chiral ferrocene-based agent.

    References

  • 1a Bianchini C. Farnetti E. Glendenning L. Graziani M. Nardin G. Peruzzini M. Rocchini E. Zanobini F. Organometallics  1994,  14:  1489 
  • 1b Jeon J.-S. Li H. García C. LaRochelle LK. Walsh PJ. J. Org. Chem.  2005,  70:  448 
  • 1c Xie J.-H. Liu S. Huo X.-H. Cheng X. Duan H.-F. Fan B.-M. Wang L.-X. Zhou Q.-L. J. Org. Chem.  2005,  70:  2967 
  • 1d Noyori R. Ohkuma T. Angew. Chem. Int. Ed.  2001,  40:  40 ; Angew. Chem. 2001, 113, 40
  • 1e Khai BT. Arcelli A. Tetrahedron Lett.  1996,  37:  6599 
  • 2a Oppolzer W. Radinov RN. Tetrahedron Lett.  1988,  29:  5645 
  • 2b Oppolzer W. Radinov RN. Tetrahedron Lett.  1991,  32:  5777 
  • 3 Kitamura M. Suga S. Kawai K. Noyori R. J. Am. Chem. Soc.  1986,  108:  6071 
  • 4a Oppolzer W. Radinov RN. Helv. Chim. Acta  1992,  75:  10 
  • 4b Oppolzer W. Radinov El-Sayed E. J. Org. Chem.  2001,  66:  4766 
  • 5 Dahmen S. Bräse S. Org. Lett.  2001,  25:  4119 
  • 6a Chen YK. Lurain AE. Walsh PJ. J. Am. Chem. Soc.  2002,  124:  12225 
  • 6b Lurain AE. Walsh PJ. J. Am. Chem. Soc.  2003,  125:  10677 
  • 6c Garcia C. Libra ER. Carroll PJ. Walsh PJ. J. Am. Chem. Soc.  2003,  125:  3210 
  • 6d Lurain AE. Carroll PJ. Walsh PJ. J. Org. Chem.  2003,  68:  1589 
  • 7 Ji J.-X. Qiu L.-Q. Yip C.-W. Chan ASC. J. Org. Chem.  2003,  68:  1589 
  • 8a Shibata T. Nakatsui K. Soai K. Inorg. Chim. Acta  1999,  296:  33 
  • 8b Soai K. Takahashi K. J. Chem. Soc., Perkin Trans. 1  1994,  1257 
  • 9 Tseng S.-L. Yang T.-K. Tetrahedron: Asymmetry  2005,  16:  773 
  • 10a Sprout CM. Richmond ML. Seto CT. J. Org. Chem.  2005,  70:  7408 
  • 10b Richmond ML. Sprout CM. Seto CT. J. Org. Chem.  2005,  70:  8835 
  • 11a Wipf P. Xu W. Tetrahedron Lett.  1994,  35:  5197 
  • 11b Wipf P. Xu W. Org. Synth.  1996,  74:  205 
  • 11c Wipf P. Ribe S. J. Org. Chem.  1998,  63:  6454 
  • 12 Schmidt F. Stemmler RT. Rudolph J. Bolm C. Chem. Soc. Rev.  2006,  35:  454 
  • 13a Bolm C. Rudolph J. J. Am. Chem. Soc.  2002,  124:  14850 
  • 13b Rudolph J. Schmidt F. Bolm C. Synthesis  2005,  840 
  • 14a Rudolph J. Hermanns N. Bolm C. J. Org. Chem.  2004,  69:  3997 
  • 14b Rudolph J. Lormann M. Bolm C. Dahmen S. Adv. Synth. Catal.  2005,  347:  1361 
  • 15 Duan H.-F. Xie J.-H. Shi W.-J. Zhang Q. Zhou Q.-L. Org. Lett.  2006,  8:  1479 
  • 18 Igushi M. Doi H. Hata S. Tomioka K. Chem. Pharm. Bull.  2004,  52:  125 
  • 19 Von Matt P. Lloyd-Jones GC. Minidis ABE. Pfaltz A. Macko L. Neuburger M. Zehnder M. Rüegger H. Pregosin PS. Helv. Chim. Acta  1995,  78:  265 
  • 20 Kuroboshi M. Tanaka M. Kishimoto S. Goto K. Mochizuki M. Tanaka H. Tetrahedron Lett.  2000,  41:  81 
  • 21 Tajbakhsh M. Lakouraj MM. Shirini F. Habibzadeh S. Nikdoost A. Tetrahedron Lett.  2004,  45:  3295 
  • 22 Singh J. Kaur I. Kaur J. Bhalla A. Kad GL. Synth. Commun.  2003,  33:  191 
16

In these studies, the NMR solvent forms a hydrogen bond to the hydroxy group of the product. The thus formed π-complex (see Figure [2] ) and the additional ring current effect lead to a shift of the NMR signals to higher ppm values.

17

NMR spectra were not recorded in CDCl3 due to decomposition of the product.