Abstract
The versatility of the ylide (triphenylphosphoranylidene)ketene (Ph3P=C=C=O, 3) in the construction of tetronic and tetramic acids from various carboxylic acid
derivatives is demonstrated by new reactions and extensions of known ones. With α-hydroxy
or α-amino esters, 3 affords tetronates or tetramates. A two-step synthesis of (-)-epi-blastmycinolactol shows that allyl α-hydroxy esters can be domino Wittig-Claisen
reacted to give 3-allyltetronic acids. More extended Wittig-Claisen-Conia cascades
can produce 3-alkylidenefuran-2,4-diones, the photooxygenation of which furnishes
lactone endoperoxides with antiplasmodial potential. Tetronic acids can be acylated
by 3 at C3 to give the corresponding acyl ylides. Their saponification yields the respective
3-acetyl compounds, e.g. the fungal metabolite pesthetoxin. α-Hydroxy acids react
with 3 to afford the corresponding 3-phosphoranylidenefuran-2,4-diones. The antibiotic (R)-reutericyclin was built up from benzyl d-leucinate and 3 in four steps by downstream acylation first at C3, then at N1 without racemization.
Key words
domino reactions - phosphorus ylides - tetramic acids - lactones - reutericyclin
References
<A NAME="RT09606SS-1">1</A>
Faulkner DJ.
Nat. Prod. Rep.
1984,
1:
551
<A NAME="RT09606SS-2">2</A>
Pattenden G.
Fortschr. Chem. Org. Naturst.
1978,
35:
133
<A NAME="RT09606SS-3">3</A>
Steglich W.
Pure Appl. Chem.
1989,
61:
281
<A NAME="RT09606SS-4">4</A>
Haynes LJ.
Plimmer JR.
Q. Rev., Chem. Soc.
1960,
14:
292
<A NAME="RT09606SS-5">5</A>
Roggo BE.
Petersen F.
Delmendo R.
Jenny H.-B.
Peter HH.
Roesel J.
J. Antibiot.
1994,
47:
136
<A NAME="RT09606SS-6">6</A>
Hamaguchi T.
Sudo T.
Osada H.
FEBS Lett.
1995,
372:
54
<A NAME="RT09606SS-7A">7a</A>
Gänzle MG.
Höltzel A.
Walter J.
Jung G.
Hammes WP.
Appl. Environ. Microbiol.
2000,
66:
4325
<A NAME="RT09606SS-7B">7b</A>
Höltzel A.
Gänzle MG.
Nicholson GJ.
Hammes WP.
Jung G.
Angew. Chem. Int. Ed.
2000,
39:
2766
<A NAME="RT09606SS-7C">7c</A>
Marquardt U.
Schmid D.
Jung G.
Synlett
2000,
1131
<A NAME="RT09606SS-7D">7d</A>
Böhme R.
Jung G.
Breitmaier E.
Helv. Chim. Acta
2005,
88:
2873
<A NAME="RT09606SS-8">8</A>
Ghisalberti EL.
Bioactive Tetramic Acid Metabolites, In Studies in Natural Products Chemistry
Vol. 28:
.
Elsevier;
Amsterdam:
2003.
p.109-163
<A NAME="RT09606SS-9">9</A>
Gossauer A.
Fortschr. Chem. Org. Naturst.
2003,
86:
1
<A NAME="RT09606SS-10">10</A>
Royles BJL.
Chem. Rev.
1995,
95:
1981
<A NAME="RT09606SS-11">11</A>
Davies DH.
Snape EW.
Suter PJ.
King TJ.
Falshaw CP.
J. Chem. Soc., Chem. Commun.
1981,
1073
<A NAME="RT09606SS-12">12</A>
Nowak A.
Steffan B.
Liebigs Ann./Recl.
1997,
9:
1817
<A NAME="RT09606SS-13">13</A>
Harrison P.
Duspara PA.
Jenkins SI.
Kassam SA.
Liscombe DK.
Hughes DW.
J. Chem. Soc., Perkin. Trans. 1
2000,
4390
<A NAME="RT09606SS-14">14</A>
Schipper D.
van der Baan JL.
Bickelhaupt F.
J. Chem. Soc., Perkin. Trans. 1
1979,
2017
<A NAME="RT09606SS-15">15</A>
Chen H.
Harrison PHM.
Org. Lett.
2004,
6:
4033
<A NAME="RT09606SS-16">16</A>
Sims JW.
Fillmore JP.
Warner DD.
Schmidt EW.
Chem. Commun.
2005,
186
<A NAME="RT09606SS-17">17</A>
Bentley R.
Bhate DS.
Keil JG.
J. Biol. Chem.
1962,
237:
859
<A NAME="RT09606SS-18">18</A>
Sekiyama Y.
Fujimoto Y.
Hasumi K.
Endo A.
J. Org. Chem.
2001,
66:
5649
<A NAME="RT09606SS-19">19</A>
Lacey RN.
J. Chem. Soc.
1954,
850
<A NAME="RT09606SS-20">20</A>
Andrews MD.
Brewster AG.
Crapnell KM.
Ibbett AJ.
Jones T.
Moloney MG.
Prout K.
Watkin D.
J. Chem. Soc., Perkin Trans. 1
1998,
223
<A NAME="RT09606SS-21">21</A>
Dixon DJ.
Ley SV.
Longbottom DA.
J. Chem. Soc., Perkin Trans. 1
1999,
2231
<A NAME="RT09606SS-22">22</A>
Ley SV.
Smith SC.
Woodward PR.
Tetrahedron
1992,
48:
1145
<A NAME="RT09606SS-23">23</A>
Jouin P.
Castro B.
Nisato D.
J. Chem. Soc., Perkin Trans. 1
1987,
1177
<A NAME="RT09606SS-24">24</A>
Raillard SP.
Chen W.
Sullivan E.
Bajjalieh W.
Bhandari A.
Baer TA.
J. Comb. Chem.
2002,
4:
470
<A NAME="RT09606SS-25">25</A>
Pirc S.
Bevk D.
Jakse R.
Recnik S.
Goic L.
Stanovnik B.
Svete J.
Synthesis
2005,
2969
<A NAME="RT09606SS-26">26</A>
Hamilakis S.
Kontonassios D.
Sandris C.
J. Heterocycl. Chem.
1996,
33:
825
<A NAME="RT09606SS-27">27</A>
Effenberger F.
Syed J.
Tetrahedron: Asymmetry
1998,
9:
817
<A NAME="RT09606SS-28">28</A>
Jones RCF.
Begley MJ.
Peterson GE.
Sumaria S.
J. Chem. Soc., Perkin Trans. 1
1990,
1959
<A NAME="RT09606SS-29">29</A>
Hori K.
Arai M.
Nomura K.
Yoshii E.
Chem. Pharm. Bull.
1987,
35:
4368
<A NAME="RT09606SS-30">30</A>
Ley SV.
Trudell ML.
Wadsworth DJ.
Tetrahedron
1991,
47:
8285
<A NAME="RT09606SS-31">31</A>
Boeckman RK.
Thomas AJ.
J. Org. Chem.
1982,
47:
2823
<A NAME="RT09606SS-32">32</A>
Schobert R.
Boeckman RK.
Pero JE.
Org. Synth.
Vol. 82:
John Wiley & Sons;
London:
2005.
p.140
<A NAME="RT09606SS-33">33</A>
Schobert R.
Jagusch C.
Melanophy C.
Mullen G.
Org. Biomol. Chem.
2004,
2:
3524
<A NAME="RT09606SS-34A">34a</A>
Löffler J.
Schobert R.
J. Chem. Soc., Perkin Trans. 1
1996,
2799
<A NAME="RT09606SS-34B">34b</A>
Schobert R.
Löffler J.
Siegfried S.
Targets Heterocycl. Syst.
1999,
3:
245
<A NAME="RT09606SS-35">35</A>
Schobert R.
Jagusch C.
J. Org. Chem.
2005,
70:
6129
<A NAME="RT09606SS-36">36</A>
Schobert R.
Jagusch C.
Tetrahedron
2005,
61:
2301
<A NAME="RT09606SS-37A">37a</A>
Schobert R.
Siegfried S.
Gordon GJ.
Nieuwenhuyzen M.
Allenmark S.
Eur. J. Org. Chem.
2001,
1951
<A NAME="RT09606SS-37B">37b</A>
Schobert R.
Gordon GJ.
Bieser A.
Milius W.
Eur. J. Org. Chem.
2003,
3637
<A NAME="RT09606SS-37C">37c</A>
Schobert R.
Gordon GJ.
Mullen G.
Stehle R.
Tetrahedron Lett.
2004,
45:
1121
<A NAME="RT09606SS-38">38</A>
Nishide K.
Aramata A.
Kamanaka T.
Inoue T.
Node M.
Tetrahedron
1994,
50:
8337
<A NAME="RT09606SS-39">39</A>
Schobert R.
Siegfried S.
Nieuwenhuyzen M.
Milius W.
Hampel F.
J. Chem. Soc., Perkin Trans. 1
2000,
1723
<A NAME="RT09606SS-40">40</A>
Kimura J.
Kouge A.
Nakamura K.
Koshino H.
Uzawa J.
Fujioka S.
Kawano T.
Biosci. Biotechnol. Biochem.
1998,
62:
1624
<A NAME="RT09606SS-41A">41a</A>
Gelin S.
Pollet P.
Tetrahedron Lett.
1980,
21:
4491
<A NAME="RT09606SS-41B">41b</A>
Mitsos C.
Zografos A.
Igglessi-Markopoulou O.
J. Heterocycl. Chem.
2002,
39:
1201
<A NAME="RT09606SS-41C">41c</A>
Skylaris CK.
Igglessi-Markopoulou O.
Markopoulos J.
Chem. Phys.
2003,
293:
355
<A NAME="RT09606SS-42A">42a</A>
Fürst T.
Ph.D. Thesis
University of Erlangen;
Germany:
1994.
<A NAME="RT09606SS-42B">42b</A>
Bestmann HJ.
Fürst T.
Schier A.
Angew. Chem. Int. Ed.
1993,
32:
1746
<A NAME="RT09606SS-42C">42c</A>
Bestmann HJ.
Fürst T.
Schier A.
Angew. Chem. Int. Ed.
1993,
32:
1747
For syntheses of similar systems via other routes, see:
<A NAME="RT09606SS-43A">43a</A>
Chopard PA.
Helv. Chim. Acta
1967,
50:
1016
<A NAME="RT09606SS-43B">43b</A>
Aitken RA.
Buchanan GM.
Karodia N.
Massil T.
Young RJ.
Tetrahedron Lett.
2001,
42:
141
<A NAME="RT09606SS-44A">44a</A>
Dahn H.
Lawendel JS.
Helv. Chim. Acta
1954,
37:
1318
<A NAME="RT09606SS-44B">44b</A>
Wasserman HH.
Parr J.
Acc. Chem. Res.
2004,
37:
687
<A NAME="RT09606SS-45">45</A>
Schobert R.
Siegfried S.
Gordon GJ.
Mulholland D.
Nieuwenhuyzen M.
Tetrahedron Lett.
2001,
42:
4561
<A NAME="RT09606SS-46">46</A>
Silva LF.
Synthesis
2001,
671
<A NAME="RT09606SS-47">47</A>
Brocksom TJ.
Coelho F.
Depres J.-P.
Greene AE.
Freire de Lima ME.
Hamelin O.
Hartmann B.
Kanazawa AM.
Wang Y.
J. Am. Chem. Soc.
2002,
124:
15313
<A NAME="RT09606SS-48A">48a</A>
McMorris TC.
Anchel M.
J. Am. Chem. Soc.
1965,
87:
1594
<A NAME="RT09606SS-48B">48b</A>
McMorris TC.
Kelner MJ.
Wang W.
Yu J.
Estes LA.
Taefle R.
J. Nat. Prod.
1996,
59:
896
<A NAME="RT09606SS-49">49</A>
Yamada K.
Ojika M.
Kigoshi H.
Angew. Chem. Int. Ed.
1998,
37:
1818 ; Angew. Chem. 1998, 110, 1918
<A NAME="RT09606SS-50">50</A>
Schobert R.
Stehle R.
Milius W.
J. Org. Chem.
2003,
68:
9827
<A NAME="RT09606SS-51">51</A>
According to the WHO protocol (see, http://www.who.int/csr/drugresist/malaria/en/markiii.pdf).
<A NAME="RT09606SS-52">52</A>
Marshall E.
Science
2000,
290:
438
<A NAME="RT09606SS-53">53</A>
Posner GH.
Cumming JN.
Woo S.-H.
Ploypradith P.
Xie S.
Shapiro TA.
J. Med. Chem.
1998,
41:
940
<A NAME="RT09606SS-54">54</A>
Crystallographic data (excluding structure factors) for the structure reported in
this paper have been deposited with the Cambridge Crystallographic Data Centre (CCDC
number 616240). Copies of the data can be obtained free of charge on application to
The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44(1223)336033, e-mail:
teched@chemcrys.cam.ac.uk].
<A NAME="RT09606SS-55A">55a</A>
Steyn PS.
Wessels PL.
Tetrahedron Lett.
1978,
19:
4707
<A NAME="RT09606SS-55B">55b</A>
Nolte MJ.
Steyn PS.
Wessels PL.
J. Chem. Soc., Perkin Trans. 1
1980,
1057
<A NAME="RT09606SS-56">56</A>
Barkley JV.
Markopoulos J.
Igglessi-Markopoulou O.
J. Chem. Soc., Perkin Trans. 2
1994,
1057
<A NAME="RT09606SS-57">57</A>
Lebrun MH.
Nicolas L.
Boutar M.
Gaudemer F.
Ranomenjanahary S.
Gaudemer A.
Phytochemistry
1988,
27:
77
<A NAME="RT09606SS-58">58</A>
Fujita M.
Nakao Y.
Matsunaga S.
Seiki M.
Itoh H.
van Soest RWM.
Fusetani N.
Tetrahedron
2001,
57:
1229
<A NAME="RT09606SS-59">59</A>
Dippenaar A.
Holzapfel CW.
Boeyens JCA.
J. Cryst. Mol. Struct.
1978,
7:
189
<A NAME="RT09606SS-60">60</A>
Imamura N.
Adachi K.
Sano H.
J. Antibiot.
1994,
47:
257
<A NAME="RT09606SS-61">61</A>
Kaufmann GF.
Sartorio R.
Lee S.
Rogers CJ.
Meijler MM.
Moss JA.
Clapham B.
Brogan AP.
Dickerson TJ.
Janda KD.
Proc. Natl. Acad. Sci. U.S.A.
2005,
102:
309
<A NAME="RT09606SS-62A">62a</A>
Gänzle MG.
Vogel RF.
Appl. Environ. Microbiol.
2003,
69:
1305
<A NAME="RT09606SS-62B">62b</A>
Gänzle MG.
Appl. Microbiol. Biotechnol.
2004,
64:
326
<A NAME="RT09606SS-63">63</A>
Poncet J.
Jouin P.
Castro B.
Nicolas L.
Boutar M.
Gaudemer A.
J. Chem. Soc., Perkin Trans. 1
1990,
611
<A NAME="RT09606SS-64">64</A>
Raddatz P.
Minck K.-O.
Rippmann F.
Schmitges C.-J.
J. Med. Chem.
1994,
37:
486
<A NAME="RT09606SS-65">65</A>
Shiosaki K.
Rapoport H.
J. Org. Chem.
1985,
50:
1229
<A NAME="RT09606SS-66">66</A>
Pons L.
Veldstra H.
Recl. Trav. Chim. Pays-Bas Belg.
1955,
74:
1217
<A NAME="RT09606SS-67">67</A>
Stork G.
Szajewski RP.
J. Am. Chem. Soc.
1974,
96:
5787
<A NAME="RT09606SS-68">68</A>
Galeotti N.
Poncet J.
Chiche L.
Jouin P.
J. Org. Chem.
1993,
58:
5370