Synthesis 2006(21): 3679-3705  
DOI: 10.1055/s-2006-950313
© Georg Thieme Verlag Stuttgart · New York

Studies on the Synthesis of Richardianidin-1 via the Tautomer-Arrested Annulation of Fischer Carbene Complexes

Mary Ellen Bos, Catherine Loncaric, Chunrui Wu, William D. Wulff*
Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
Further Information

Publication History

Received 6 July 2006
Publication Date:
12 October 2006 (online)


A strategy for the synthesis of richardianidin-1 is evaluated which has as its key step the tautomer-arrested annulation of chromium-carbene complexes. Both inter- and intramolecular variations of the strategy are examined. The intramolecular reaction involves the tethering of the alkyne to the oxygen stabilizing substituent of the carbene carbon. The outcome of the intramolecular tautomer-arrested annulation was found to be highly dependent on the nature of the tether and the on the type of substituent on the alkyne. The product distribution from these reactions included the desired hydrindenone resulting from tautomer-arrested annulation, a naphthalenedione, and a spirocyclohexadienone. The latter two products result from CO insertion prior to cyclization. The optimal tether length for the tautomer-arrested product is four atoms between the alkyne and the carbene carbon. The yields for the intramolecular reaction dropped significantly for a substituent on the alkyne terminus that was larger than a methyl group and this was not suitable for a synthesis of richardianidin-1. Initial studies on the intermolecular tautomer-arrested annulation focused on the regioselectivity of alkyne incorporation. The reaction with isopropyl(methyl)acetylene gives a single regioisomer and reveals that the tautomer-arrested annulation is more regioselective than the normal benzannulation. Furthermore, the intermolecular reaction is more tolerant of larger substituents on the terminus of the alkyne. As a result of the studies on the intermolecular tautomer-arrested annulation a suitable alkyne was found that introduces all of the carbons present in the six-membered lactone of richardianidin-1.


  • 1 Mossa JS. Cassady JM. Kozlowski JF. Zennie TM. Antown MD. Pellechia MG. McKenzie AT. Byrn SR. Tetrahedron Lett.  1988,  29:  3627 
  • 2a Abourashed EA. Ganzera M. Khan IA. Khan S. Mossa JS. El-Feraly FS. Phytother. Res.  2003,  17:  657 
  • 2b Mossa JS. Muhammad I. Al-Yahya MA. Mirza HH. El-Feraly FS. McPhail AT. J. Nat. Prod.  1996,  59:  224 
  • 2c Muhammad I. Mossa JS. Al-Yahya MA. Mirza HH. El-Feraly FS. J. Nat. Prod.  1994,  57:  248 
  • 3 Sanchez M. Bermejo F. Tetrahedron Lett.  1997,  38:  5057 
  • 4 Still WC. J. Am. Chem. Soc.  1978,  100:  1481 
  • 5 Bos ME. Wulff WD. Wilson KJ. J. Chem. Soc., Chem. Commun.  1996,  1863 
  • 6a Wulff WD. In Comprehensive Organometallic Chemistry II   Vol. 12:  Abel EW. Stone RGA. Wilkinson G. Pergemon; Oxford: 1995.  p.469-547  
  • 6b Harvey DF. Sigano DM. Chem. Rev.  1996,  96:  271 
  • 6c Metal Carbenes in Organic Synthesis   Dörwald FZ. Wiley-VCH; Weinheim: 1999. 
  • 6d Barluenga J. Fananas FJ. Tetrahedron  2000,  56:  4597 
  • 6e Herndon JW. Tetrahedron  2000,  56:  1257 
  • 6f Sierra MA. Chem. Rev.  2000,  100:  3591 
  • 6g Hegedus LS. Top. Organomet. Chem.  2004,  13:  157 
  • 6h de Meijere A. Wu Y.-T. Top. Organomet. Chem.  2004,  13:  21 
  • 6i Minatti A. Dötz KH. Top. Organomet. Chem.  2004,  13:  123 
  • 6j Barluenga J. Rodriguez F. Fananas FJ. Florez J. Top. Organomet. Chem.  2004,  13:  59 
  • 6k Barluenga J. Santamaria J. Tomas M. Chem. Rev.  2004,  104:  2259 
  • 6l Herndon JW. Coord. Chem. Rev.  2005,  249:  999 
  • 6m Barluenga J. Fernandez-Rodriguez MA. Aguilar E. J. Organomet. Chem.  2005,  690:  539 
  • 7 Wulff WD. Tang P.-C. McCallum JS. J. Am. Chem. Soc.  1981,  103:  7677 
  • 8a Yamashita A. Toy A. Tetrahedron Lett.  1986,  27:  3471 
  • 8b Dötz KH. Muhlemeier J. Schubert U. Orama O. J. Organomet. Chem.  1983,  247:  187 
  • 9 Bos ME. Wulff WD. Miller RA. Chamberlin S. Brandvold TA. J. Am. Chem. Soc.  1991,  113:  9293 
  • 10a Dötz KH. Dietz R. Appenstein CK. Neugebauer D. Schubert U. Chem. Ber.  1979,  112:  3682 
  • 10b Quinn JF. Bos ME. Wulff WD. Org. Lett.  1999,  1:  161 
  • 11a Semmelhack MF. Bozell JJ. Tetrahedron Lett.  1982,  23:  2931 
  • 11b Semmelhack MF. Bozell JJ. Sato T. Wulff WD. Spiess E. Zask A. J. Am. Chem. Soc.  1982,  104:  5850 
  • 11c Semmelhack MF. Bozell JJ. Keller L. Sato T. Spiess E. Wulff WD. Zask A. Tetrahedron  1985,  41:  5803 
  • 12 Sikorski A. Bhat NG. Cole TE. Wang KK. Brown HC. J. Org. Chem.  1986,  51:  4521 
  • 13a Bao J. Wulff WD. Fumo MJ. Grant EB. Heller DP. Whitcomb MC. Yeung SM. J. Am. Chem. Soc.  1996,  118:  2166 
  • 13b Jiang W. Fuertes MJ. Wulff WD. Tetrahedron  2000,  56:  2183 
  • 14 Shipov AG. Savostyanova IA. Baukov YI. Zh. Obshch. Khim.  1989,  59:  1204 
  • 15 Zweifel G. Rajagopalan S. J. Am. Chem. Soc.  1985,  107:  700 
  • 16a Waters ML. Brandvold TA. Isaacs L. Wulff WD. Rheingold AL. Organometallics  1998,  17:  4298 
  • 16b Chamberlin S. Waters ML. Wulff WD. J. Am. Chem. Soc.  1994,  116:  3113 
  • 16c Davies MW. Johnson CN. Harrity JPA. J. Org. Chem.  2001,  66:  3525 
  • 17a Yamashita A. Tetrahedron Lett.  1986,  27:  5915 
  • 17b Chan KS. Peterson GA. Brandvold TA. Faron KL. Challener CA. Hydahl C. Wulff WD. J. Organomet. Chem.  1987,  334:  9 
  • 18 Wulff WD. Bax BM. Brandvold TA. Chan KS. Gilbert AM. Hsung RP. Organometallics  1994,  13:  102 
  • 19 Liptak VP. Wulff WD. Tetrahedron  2000,  56:  10229